These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22801369)
1. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Shimizu M; Masuo S; Fujita T; Doi Y; Kamimura Y; Takaya N Mol Cell Biol; 2012 Sep; 32(18):3743-55. PubMed ID: 22801369 [TBL] [Abstract][Full Text] [Related]
2. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans. Shimizu M; Takaya N Biosci Biotechnol Biochem; 2013; 77(9):1888-93. PubMed ID: 24018665 [TBL] [Abstract][Full Text] [Related]
3. Sirtuin A regulates secondary metabolite production by Aspergillus nidulans. Itoh E; Shigemoto R; Oinuma KI; Shimizu M; Masuo S; Takaya N J Gen Appl Microbiol; 2017 Sep; 63(4):228-235. PubMed ID: 28674377 [TBL] [Abstract][Full Text] [Related]
4. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. Itoh E; Odakura R; Oinuma KI; Shimizu M; Masuo S; Takaya N J Biol Chem; 2017 Jun; 292(26):11043-11054. PubMed ID: 28465348 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Soukup AA; Chiang YM; Bok JW; Reyes-Dominguez Y; Oakley BR; Wang CC; Strauss J; Keller NP Mol Microbiol; 2012 Oct; 86(2):314-30. PubMed ID: 22882998 [TBL] [Abstract][Full Text] [Related]
7. Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Kawauchi M; Nishiura M; Iwashita K Eukaryot Cell; 2013 Aug; 12(8):1087-96. PubMed ID: 23729383 [TBL] [Abstract][Full Text] [Related]
8. Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. Fischer J; Müller SY; Netzker T; Jäger N; Gacek-Matthews A; Scherlach K; Stroe MC; García-Altares M; Pezzini F; Schoeler H; Reichelt M; Gershenzon J; Krespach MK; Shelest E; Schroeckh V; Valiante V; Heinzel T; Hertweck C; Strauss J; Brakhage AA Elife; 2018 Oct; 7():. PubMed ID: 30311911 [TBL] [Abstract][Full Text] [Related]
9. Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans. Nützmann HW; Fischer J; Scherlach K; Hertweck C; Brakhage AA Appl Environ Microbiol; 2013 Oct; 79(19):6102-9. PubMed ID: 23892751 [TBL] [Abstract][Full Text] [Related]
10. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Yin WB; Amaike S; Wohlbach DJ; Gasch AP; Chiang YM; Wang CC; Bok JW; Rohlfs M; Keller NP Mol Microbiol; 2012 Mar; 83(5):1024-34. PubMed ID: 22283524 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Imai S; Armstrong CM; Kaeberlein M; Guarente L Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811 [TBL] [Abstract][Full Text] [Related]
12. NAD Shimizu M Biosci Biotechnol Biochem; 2018 Feb; 82(2):216-224. PubMed ID: 29327656 [TBL] [Abstract][Full Text] [Related]
13. 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production. Shigemoto R; Matsumoto T; Masuo S; Takaya N J Gen Appl Microbiol; 2018 Nov; 64(5):240-247. PubMed ID: 29794367 [TBL] [Abstract][Full Text] [Related]
15. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Reyes-Dominguez Y; Bok JW; Berger H; Shwab EK; Basheer A; Gallmetzer A; Scazzocchio C; Keller N; Strauss J Mol Microbiol; 2010 Jun; 76(6):1376-86. PubMed ID: 20132440 [TBL] [Abstract][Full Text] [Related]
16. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Fernandes M; Keller NP; Adams TH Mol Microbiol; 1998 Jun; 28(6):1355-65. PubMed ID: 9680223 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Rundlett SE; Carmen AA; Suka N; Turner BM; Grunstein M Nature; 1998 Apr; 392(6678):831-5. PubMed ID: 9572144 [TBL] [Abstract][Full Text] [Related]
18. Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. Caruso ML; Litzka O; Martic G; Lottspeich F; Brakhage AA J Mol Biol; 2002 Oct; 323(3):425-39. PubMed ID: 12381299 [TBL] [Abstract][Full Text] [Related]
19. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Kato N; Brooks W; Calvo AM Eukaryot Cell; 2003 Dec; 2(6):1178-86. PubMed ID: 14665453 [TBL] [Abstract][Full Text] [Related]
20. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Hedtke M; Rauscher S; Röhrig J; Rodríguez-Romero J; Yu Z; Fischer R Mol Microbiol; 2015 Aug; 97(4):733-45. PubMed ID: 25980340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]