BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 22801484)

  • 1. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
    Dorgham OM; Laycock SD; Fisher MH
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2594-603. PubMed ID: 22801484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast DRR generation for 2D to 3D registration on GPUs.
    Tornai GJ; Cserey G; Pappas I
    Med Phys; 2012 Aug; 39(8):4795-9. PubMed ID: 22894404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast DRR splat rendering using common consumer graphics hardware.
    Spoerk J; Bergmann H; Wanschitz F; Dong S; Birkfellner W
    Med Phys; 2007 Nov; 34(11):4302-8. PubMed ID: 18072495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating DRR generation using Fourier slice theorem on the GPU.
    Abdellah M; Eldeib A; Owis MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4238-41. PubMed ID: 26737230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance-aware programming for intraoperative intensity-based image registration on graphics processing units.
    Leong MCW; Lee KH; Kwan BPY; Ng YL; Liu Z; Navab N; Luk W; Kwok KW
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):375-386. PubMed ID: 33484431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast generation of digitally reconstructed radiographs using attenuation fields with application to 2D-3D image registration.
    Russakoff DB; Rohlfing T; Mori K; Rueckert D; Ho A; Adler JR; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1441-54. PubMed ID: 16279081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.
    Abdellah M; Eldeib A; Owis MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4242-5. PubMed ID: 26737231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy.
    Mori S; Kobayashi M; Kumagai M; Minohara S
    Radiol Phys Technol; 2009 Jan; 2(1):40-5. PubMed ID: 20821127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient rendering of digitally reconstructed radiographs on heterogeneous computing architectures using central slice theorem.
    Abdellah M; Abdallah M; Alzanati M; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3957-3960. PubMed ID: 28269151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time 6DoF pose recovery from X-ray images using library-based DRR and hybrid optimization.
    Miao S; Tuysuzoglu A; Wang ZJ; Liao R
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1211-20. PubMed ID: 27038967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology.
    Spoerk J; Gendrin C; Weber C; Figl M; Pawiro SA; Furtado H; Fabri D; Bloch C; Bergmann H; Gröller E; Birkfellner W
    Z Med Phys; 2012 Feb; 22(1):13-20. PubMed ID: 21782399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel generation of digitally reconstructed radiographs on heterogeneous multi-GPU workstations.
    Abdellah M; Abdelaziz A; Eslam Ali EM; Abdelaziz S; Sayed A; Owis MI; Eldeib A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3953-3956. PubMed ID: 28269150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating reconstruction of reference digital tomosynthesis using graphics hardware.
    Yan H; Ren L; Godfrey DJ; Yin FF
    Med Phys; 2007 Oct; 34(10):3768-76. PubMed ID: 17985622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating B-spline interpolation on GPUs: Application to medical image registration.
    Zachariadis O; Teatini A; Satpute N; Gómez-Luna J; Mutlu O; Elle OJ; Olivares J
    Comput Methods Programs Biomed; 2020 Sep; 193():105431. PubMed ID: 32283385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast reconstructed radiographs from octree-compressed volumetric data.
    Fisher M; Dorgham O; Laycock SD
    Int J Comput Assist Radiol Surg; 2013 Mar; 8(2):313-22. PubMed ID: 22821505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration.
    Sharp GC; Kandasamy N; Singh H; Folkert M
    Phys Med Biol; 2007 Oct; 52(19):5771-83. PubMed ID: 17881799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs.
    Ellingwood ND; Yin Y; Smith M; Lin CL
    Comput Methods Programs Biomed; 2016 Apr; 127():290-300. PubMed ID: 26776541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing 2D constrained delaunay triangulation using the GPU.
    Qi M; Cao TT; Tan TS
    IEEE Trans Vis Comput Graph; 2013 May; 19(5):736-48. PubMed ID: 23492377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.