These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tuning support vector machines for minimax and Neyman-Pearson classification. Davenport MA; Baraniuk RG; Scott CD IEEE Trans Pattern Anal Mach Intell; 2010 Oct; 32(10):1888-98. PubMed ID: 20724764 [TBL] [Abstract][Full Text] [Related]
4. Training nu-support vector classifiers: theory and algorithms. Chang CC; Lin CJ Neural Comput; 2001 Sep; 13(9):2119-47. PubMed ID: 11516360 [TBL] [Abstract][Full Text] [Related]
5. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection]. Liu QJ; Jing LH; Wang MF; Lin QZ Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):746-51. PubMed ID: 23705446 [TBL] [Abstract][Full Text] [Related]
6. A Kernel Classification Framework for Metric Learning. Wang F; Zuo W; Zhang L; Meng D; Zhang D IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):1950-62. PubMed ID: 25347887 [TBL] [Abstract][Full Text] [Related]
7. Linear regression-based efficient SVM learning for large-scale classification. Wu J; Yang H IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2357-69. PubMed ID: 25576581 [TBL] [Abstract][Full Text] [Related]
8. Contourlet-based mammography mass classification using the SVM family. Moayedi F; Azimifar Z; Boostani R; Katebi S Comput Biol Med; 2010 Apr; 40(4):373-83. PubMed ID: 20181330 [TBL] [Abstract][Full Text] [Related]
9. Accurate on-line ν-support vector learning. Gu B; Wang JD; Yu YC; Zheng GS; Huang YF; Xu T Neural Netw; 2012 Mar; 27():51-9. PubMed ID: 22057091 [TBL] [Abstract][Full Text] [Related]
10. L2 kernel classification. Kim J; Scott CD IEEE Trans Pattern Anal Mach Intell; 2010 Oct; 32(10):1822-31. PubMed ID: 20724759 [TBL] [Abstract][Full Text] [Related]
11. Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Jian L; Xia Z; Liang X; Gao C Neural Netw; 2011 Jun; 24(5):476-83. PubMed ID: 21441012 [TBL] [Abstract][Full Text] [Related]
12. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests. Xin N; Gu XF; Wu H; Hu YZ; Yang ZL Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():18-24. PubMed ID: 22240232 [TBL] [Abstract][Full Text] [Related]
13. Building sparse multiple-kernel SVM classifiers. Hu M; Chen Y; Kwok JT IEEE Trans Neural Netw; 2009 May; 20(5):827-39. PubMed ID: 19342346 [TBL] [Abstract][Full Text] [Related]
15. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Hua S; Sun Z J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775 [TBL] [Abstract][Full Text] [Related]
16. A coordinate descent margin based-twin support vector machine for classification. Shao YH; Deng NY Neural Netw; 2012 Jan; 25(1):114-21. PubMed ID: 21890319 [TBL] [Abstract][Full Text] [Related]
17. Classification of fruits using computer vision and a multiclass support vector machine. Zhang Y; Wu L Sensors (Basel); 2012; 12(9):12489-505. PubMed ID: 23112727 [TBL] [Abstract][Full Text] [Related]
18. A practical approach to model selection for support vector machines with a Gaussian kernel. Varewyck M; Martens JP IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):330-40. PubMed ID: 20699214 [TBL] [Abstract][Full Text] [Related]
19. Unsupervised analysis of fMRI data using kernel canonical correlation. Hardoon DR; Mourão-Miranda J; Brammer M; Shawe-Taylor J Neuroimage; 2007 Oct; 37(4):1250-9. PubMed ID: 17686634 [TBL] [Abstract][Full Text] [Related]
20. Generalized SMO algorithm for SVM-based multitask learning. Cai F; Cherkassky V IEEE Trans Neural Netw Learn Syst; 2012 Jun; 23(6):997-1003. PubMed ID: 24806769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]