These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22801590)

  • 1. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16558-65. PubMed ID: 22801590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative purification of carbon nanotubes and its impact on catalytic performance in oxidative dehydrogenation reactions.
    Rinaldi A; Zhang J; Frank B; Su DS; Abd Hamid SB; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):254-60. PubMed ID: 20112335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations.
    Tang S; Cao Z
    J Chem Phys; 2011 Jan; 134(4):044710. PubMed ID: 21280788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions.
    Schwartz V; Fu W; Tsai YT; Meyer HM; Rondinone AJ; Chen J; Wu Z; Overbury SH; Liang C
    ChemSusChem; 2013 May; 6(5):840-6. PubMed ID: 23471876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane.
    Dathar GK; Tsai YT; Gierszal K; Xu Y; Liang C; Rondinone AJ; Overbury SH; Schwartz V
    ChemSusChem; 2014 Feb; 7(2):483-91. PubMed ID: 24464945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants.
    Sun H; Liu S; Zhou G; Ang HM; Tadé MO; Wang S
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5466-71. PubMed ID: 22967012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
    Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE
    Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion.
    Blank JH; Beckers J; Collignon PF; Rothenberg G
    Chemphyschem; 2007 Dec; 8(17):2490-7. PubMed ID: 18022996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane.
    Marco Y; Roldán L; Muñoz E; García-Bordejé E
    ChemSusChem; 2014 Sep; 7(9):2496-504. PubMed ID: 25138580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.
    Kim SH; Jeong GH; Choi D; Yoon S; Jeon HB; Lee SM; Kim SW
    J Colloid Interface Sci; 2013 Jan; 389(1):85-90. PubMed ID: 23026300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface.
    Fu H; Liu ZP; Li ZH; Wang WN; Fan KN
    J Am Chem Soc; 2006 Aug; 128(34):11114-23. PubMed ID: 16925429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties.
    Xiang G; He J; Li T; Zhuang J; Wang X
    Nanoscale; 2011 Sep; 3(9):3737-42. PubMed ID: 21804982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.
    Wang X; Fan Q; Chen Z; Wang Q; Li J; Hobiny A; Alsaedi A; Wang X
    Chem Rec; 2016 Feb; 16(1):295-318. PubMed ID: 26915704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions.
    Davies TE; García T; Solsona B; Taylor SH
    Chem Commun (Camb); 2006 Aug; (32):3417-9. PubMed ID: 16896480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.
    Geng L; Wu S; Zou Y; Jia M; Zhang W; Yan W; Liu G
    J Colloid Interface Sci; 2014 May; 421():71-7. PubMed ID: 24594034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets.
    Yu X; Cai H; Zhang W; Li X; Pan N; Luo Y; Wang X; Hou JG
    ACS Nano; 2011 Feb; 5(2):952-8. PubMed ID: 21210657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Ptδ+ species interacted with WOx clusters.
    Wu X; Zhang L; Weng D; Liu S; Si Z; Fan J
    J Hazard Mater; 2012 Jul; 225-226():146-54. PubMed ID: 22609394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ UV-vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts.
    Malleswara Rao TV; Deo G; Jehng JM; Wachs IE
    Langmuir; 2004 Aug; 20(17):7159-65. PubMed ID: 15301500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.