BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22801647)

  • 1. Non-canonical regioisomerizations and a 'Diels-Alderase' are likely essential in the biosynthesis of spiculoic acid A.
    Pinto A; Boddy CN
    Bioorg Med Chem Lett; 2012 Aug; 22(16):5253-6. PubMed ID: 22801647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a total synthesis of the novel polyketide natural product spiculoic acid A.
    Mehta G; Kundu UK
    Org Lett; 2005 Dec; 7(25):5569-72. PubMed ID: 16320993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiculoic acids A and B, new polyketides isolated from the Caribbean marine sponge Plakortis angulospiculatus.
    Huang XH; van Soest R; Roberge M; Andersen RJ
    Org Lett; 2004 Jan; 6(1):75-8. PubMed ID: 14703354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani.
    Kasahara K; Miyamoto T; Fujimoto T; Oguri H; Tokiwano T; Oikawa H; Ebizuka Y; Fujii I
    Chembiochem; 2010 Jun; 11(9):1245-52. PubMed ID: 20486243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical reassignment of Mehta and Kundu's spiculoic acid a analogue.
    Kirkham JE; Lee V; Baldwin JE
    Org Lett; 2006 Nov; 8(24):5537-40. PubMed ID: 17107066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic synthesis of marine sponge metabolite spiculoic acid A and establishment of the absolute configuration of the natural product.
    Kirkham JE; Lee V; Baldwin JE
    Chem Commun (Camb); 2006 Jul; (27):2863-5. PubMed ID: 17007398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular cyclizations of polyketide biosynthesis: mining for a "Diels-Alderase"?
    Kelly WL
    Org Biomol Chem; 2008 Dec; 6(24):4483-93. PubMed ID: 19039353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of 3-methoxy-5-methyl naphthoic acid and its incorporation into the antitumor antibiotic azinomycin B.
    Ding W; Deng W; Tang M; Zhang Q; Tang G; Bi Y; Liu W
    Mol Biosyst; 2010 Jun; 6(6):1071-81. PubMed ID: 20485749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing a toolkit for precursor-directed polyketide biosynthesis: exploring substrate promiscuities of acid-CoA ligases.
    Go MK; Chow JY; Cheung VW; Lim YP; Yew WS
    Biochemistry; 2012 Jun; 51(22):4568-79. PubMed ID: 22587726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical Characterization of a Eukaryotic Decalin-Forming Diels-Alderase.
    Li L; Yu P; Tang MC; Zou Y; Gao SS; Hung YS; Zhao M; Watanabe K; Houk KN; Tang Y
    J Am Chem Soc; 2016 Dec; 138(49):15837-15840. PubMed ID: 27960349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways.
    González-Lergier J; Broadbelt LJ; Hatzimanikatis V
    J Am Chem Soc; 2005 Jul; 127(27):9930-8. PubMed ID: 15998100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of elansolid biosynthesis: evidence for an unprecedented quinone methide initiated intramolecular Diels-Alder cycloaddition/macrolactonization.
    Dehn R; Katsuyama Y; Weber A; Gerth K; Jansen R; Steinmetz H; Höfle G; Müller R; Kirschning A
    Angew Chem Int Ed Engl; 2011 Apr; 50(17):3882-7. PubMed ID: 21472917
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis.
    Zhao Q; He Q; Ding W; Tang M; Kang Q; Yu Y; Deng W; Zhang Q; Fang J; Tang G; Liu W
    Chem Biol; 2008 Jul; 15(7):693-705. PubMed ID: 18635006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orchestration of discoid polyketide cyclization in the resistomycin pathway.
    Fritzsche K; Ishida K; Hertweck C
    J Am Chem Soc; 2008 Jul; 130(26):8307-16. PubMed ID: 18533655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into pyrroindomycin biosynthesis reveal a uniform paradigm for tetramate/tetronate formation.
    Wu Q; Wu Z; Qu X; Liu W
    J Am Chem Soc; 2012 Oct; 134(42):17342-5. PubMed ID: 23062149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature's Strategy for Catalyzing Diels-Alder Reaction.
    Oikawa H
    Cell Chem Biol; 2016 Apr; 23(4):429-30. PubMed ID: 27105277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel applications of plant polyketide synthases.
    Abe I
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):179-85. PubMed ID: 22245533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes.
    Campbell CD; Vederas JC
    Biopolymers; 2010 Sep; 93(9):755-63. PubMed ID: 20577995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective.
    Pinto A; Wang M; Horsman M; Boddy CN
    Org Lett; 2012 May; 14(9):2278-81. PubMed ID: 22519860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a carbonyl-conjugated polyene precursor in 10-membered enediyne biosynthesis.
    Kong R; Goh LP; Liew CW; Ho QS; Murugan E; Li B; Tang K; Liang ZX
    J Am Chem Soc; 2008 Jul; 130(26):8142-3. PubMed ID: 18529057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.