These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 2280184)
1. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. Roda A; Minutello A; Angellotti MA; Fini A J Lipid Res; 1990 Aug; 31(8):1433-43. PubMed ID: 2280184 [TBL] [Abstract][Full Text] [Related]
2. Relationship between structure and intestinal absorption of bile acids with a steroid or side-chain modification. Aldini R; Roda A; Montagnani M; Cerrè C; Pellicciari R; Roda E Steroids; 1996 Oct; 61(10):590-7. PubMed ID: 8910972 [TBL] [Abstract][Full Text] [Related]
3. Heuman indices of hydrophobicity of bile acids and their comparison with a newly developed and conventional molecular descriptors. Poša M Biochimie; 2014 Feb; 97():28-38. PubMed ID: 24076126 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates. Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061 [TBL] [Abstract][Full Text] [Related]
5. Aqueous solubility and acidity constants of cholic, deoxycholic, chenodeoxycholic, and ursodeoxycholic acids. Moroi Y; Kitagawa M; Itoh H J Lipid Res; 1992 Jan; 33(1):49-53. PubMed ID: 1552232 [TBL] [Abstract][Full Text] [Related]
6. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Benedetti A; Alvaro D; Bassotti C; Gigliozzi A; Ferretti G; La Rosa T; Di Sario A; Baiocchi L; Jezequel AM Hepatology; 1997 Jul; 26(1):9-21. PubMed ID: 9214446 [TBL] [Abstract][Full Text] [Related]
7. The profile of bile acids and their sulfate metabolites in human urine and serum. Bathena SP; Mukherjee S; Olivera M; Alnouti Y J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 942-943():53-62. PubMed ID: 24212143 [TBL] [Abstract][Full Text] [Related]
8. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Fu ZD; Klaassen CD Toxicol Appl Pharmacol; 2013 Dec; 273(3):680-90. PubMed ID: 24183703 [TBL] [Abstract][Full Text] [Related]
9. Bile acid binding in plasma: the importance of lipoproteins. Salvioli G; Lugli R; Pradelli JM; Gigliotti G FEBS Lett; 1985 Aug; 187(2):272-6. PubMed ID: 4018265 [TBL] [Abstract][Full Text] [Related]
11. Solubility of calcium salts of unconjugated and conjugated natural bile acids. Gu JJ; Hofmann AF; Ton-Nu HT; Schteingart CD; Mysels KJ J Lipid Res; 1992 May; 33(5):635-46. PubMed ID: 1619359 [TBL] [Abstract][Full Text] [Related]
12. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. Yang T; Shu T; Liu G; Mei H; Zhu X; Huang X; Zhang L; Jiang Z J Steroid Biochem Mol Biol; 2017 Sep; 172():69-78. PubMed ID: 28583875 [TBL] [Abstract][Full Text] [Related]
13. Calcium binding by bile acids: in vitro studies using a calcium ion electrode. Gleeson D; Murphy GM; Dowling RH J Lipid Res; 1990 May; 31(5):781-91. PubMed ID: 2166121 [TBL] [Abstract][Full Text] [Related]
14. The influence of NaCl on hydrophobicity of selected, pharmacologically active bile acids expressed with chromatographic retention index and critical micellar concentration. Posa M; Pilipović A; Lalić M Colloids Surf B Biointerfaces; 2010 Nov; 81(1):336-43. PubMed ID: 20702073 [TBL] [Abstract][Full Text] [Related]
15. The Human UDP-glucuronosyltransferase UGT2A1 and UGT2A2 enzymes are highly active in bile acid glucuronidation. Perreault M; Gauthier-Landry L; Trottier J; Verreault M; Caron P; Finel M; Barbier O Drug Metab Dispos; 2013 Sep; 41(9):1616-20. PubMed ID: 23756265 [TBL] [Abstract][Full Text] [Related]
16. Experimental evaluation of a model for predicting micellar composition and concentration of monomeric species in bile salt binary mixtures. Roda A; Cerré C; Fini A; Sipahi AM; Baraldini M J Pharm Sci; 1995 May; 84(5):593-8. PubMed ID: 7658350 [TBL] [Abstract][Full Text] [Related]
17. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation. Liang C; Qiao JQ; Lian HZ J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597 [TBL] [Abstract][Full Text] [Related]
18. Structure-retention correlation of isomeric bile acids in inclusion high-performance liquid chromatography with methyl beta-cyclodextrin. Momose T; Yamaguchi Y; Iida T; Goto J; Nambara T Lipids; 1998 Jan; 33(1):101-8. PubMed ID: 9470179 [TBL] [Abstract][Full Text] [Related]
19. Determination of molecular associations of some hydrophobic and hydrophilic bile acids by infrared and Raman spectroscopy. Lamcharfi E; Cohen-Solal C; Parquet M; Lutton C; Dupré J; Meyer C Eur Biophys J; 1997; 25(4):285-91. PubMed ID: 9112757 [TBL] [Abstract][Full Text] [Related]
20. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts. Ninomiya R; Matsuoka K; Moroi Y Biochim Biophys Acta; 2003 Nov; 1634(3):116-25. PubMed ID: 14643799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]