These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22802131)

  • 1. Parallel acquisition of multi-dimensional spectra in protein NMR.
    Kupče E; Kay LE
    J Biomol NMR; 2012 Sep; 54(1):1-7. PubMed ID: 22802131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins.
    Ding K; Gronenborn AM
    J Magn Reson; 2002 Jun; 156(2):262-8. PubMed ID: 12165262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple resonance solid state NMR experiments with reduced dimensionality evolution periods.
    Astrof NS; Lyon CE; Griffin RG
    J Magn Reson; 2001 Oct; 152(2):303-7. PubMed ID: 11567583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR with multiple receivers.
    Kupče E
    Top Curr Chem; 2013; 335():71-96. PubMed ID: 21837554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction.
    Rovnyak D; Frueh DP; Sastry M; Sun ZY; Stern AS; Hoch JC; Wagner G
    J Magn Reson; 2004 Sep; 170(1):15-21. PubMed ID: 15324754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous alpha/beta spin-state selection for (13)C and (15)N from a time-shared HSQC-IPAP experiment.
    Nolis P; Parella T
    J Biomol NMR; 2007 Jan; 37(1):65-77. PubMed ID: 17160627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HNCA+, HNCO+, and HNCACB+ experiments: improved performance by simultaneous detection of orthogonal coherence transfer pathways.
    Gil-Caballero S; Favier A; Brutscher B
    J Biomol NMR; 2014 Sep; 60(1):1-9. PubMed ID: 25056271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra.
    Chen K; Freedberg DI; Keire DA
    J Magn Reson; 2015 Feb; 251():65-70. PubMed ID: 25562571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA.
    Nietlispach D; Ito Y; Laue ED
    J Am Chem Soc; 2002 Sep; 124(37):11199-207. PubMed ID: 12224968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous acquisition of 13Cα-15N and 1H-15N-15N sequential correlations in proteins: application of dual receivers in 3D HNN.
    Chakraborty S; Paul S; Hosur RV
    J Biomol NMR; 2012 Jan; 52(1):5-10. PubMed ID: 22203187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting the "afterglow" of 13C NMR in proteins using multiple receivers.
    Kupče Ē; Kay LE; Freeman R
    J Am Chem Soc; 2010 Dec; 132(51):18008-11. PubMed ID: 21126087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets.
    Stanek J; Koźmiński W
    J Biomol NMR; 2010 May; 47(1):65-77. PubMed ID: 20372976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extended combinatorial 15N, 13Cα, and 13C' labeling approach to protein backbone resonance assignment.
    Löhr F; Tumulka F; Bock C; Abele R; Dötsch V
    J Biomol NMR; 2015 Jul; 62(3):263-79. PubMed ID: 25953311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast multidimensional NMR spectroscopy by spin-state selective off-resonance decoupling (SITAR).
    Keller R; Grace CR; Riek R
    Magn Reson Chem; 2006 Jul; 44 Spec No():S196-205. PubMed ID: 16823901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment.
    Löhr F; Reckel S; Karbyshev M; Connolly PJ; Abdul-Manan N; Bernhard F; Moore JM; Dötsch V
    J Biomol NMR; 2012 Mar; 52(3):197-210. PubMed ID: 22252484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced dimensionality (4,3)D-hnCOCANH experiment: an efficient backbone assignment tool for NMR studies of proteins.
    Kumar D
    J Struct Funct Genomics; 2013 Sep; 14(3):109-18. PubMed ID: 23982149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D TROSY-HNCA(coded)CB and TROSY-HNCA(coded)CO experiments: triple resonance NMR experiments with two sequential connectivity pathways and high sensitivity.
    Ritter C; Lührs T; Kwiatkowski W; Riek R
    J Biomol NMR; 2004 Mar; 28(3):289-94. PubMed ID: 14752261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H(C) and 1H(N) total NOE correlations in a single 3D NMR experiment. 15N and 13C time-sharing in t1 and t2 dimensions for simultaneous data acquisition.
    Xia Y; Yee A; Arrowsmith CH; Gao X
    J Biomol NMR; 2003 Nov; 27(3):193-203. PubMed ID: 12975580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shiftless nuclear magnetic resonance spectroscopy.
    Wu CH; Opella SJ
    J Chem Phys; 2008 Feb; 128(5):052312. PubMed ID: 18266429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.