BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22802140)

  • 1. A method of isolating viable chondrocytes with proliferative capacity from cryopreserved human articular cartilage.
    Xia Z; Duan X; Murray D; Triffitt JT; Price AJ
    Cell Tissue Bank; 2013 Jun; 14(2):267-76. PubMed ID: 22802140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of rapid cooling on articular cartilage.
    Guan J; Urban JP; Li ZH; Ferguson DJ; Gong CY; Cui ZF
    Cryobiology; 2006 Jun; 52(3):430-9. PubMed ID: 16620806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of preservation conditions on cartilage tissue for cell transplantation.
    Kim BY; Nam BM; Lee KM; Jo YH; Nemeno JG; Yang W; Lee S; Kim H; Jang IJ; Takebe T; Lee JI
    Transplant Proc; 2014 May; 46(4):1139-44. PubMed ID: 24815147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-injury relationships for cryoprotective agent injury to human chondrocytes.
    Fahmy MD; Almansoori KA; Laouar L; Prasad V; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2014 Feb; 68(1):50-6. PubMed ID: 24269869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation of intact human articular cartilage.
    Jomha NM; Lavoie G; Muldrew K; Schachar NS; McGann LE
    J Orthop Res; 2002 Nov; 20(6):1253-5. PubMed ID: 12472237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function.
    Yudoh K; Nguyen vT; Nakamura H; Hongo-Masuko K; Kato T; Nishioka K
    Arthritis Res Ther; 2005; 7(2):R380-91. PubMed ID: 15743486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cryopreservation on human articular chondrocyte viability, proliferation, and collagen expression.
    Rendal-Vázquez ME; Maneiro-Pampín E; Rodríguez-Cabarcos M; Fernández-Mallo O; López de Ullibarri I; Andión-Núñez C; Blanco FJ
    Cryobiology; 2001 Feb; 42(1):2-10. PubMed ID: 11336484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrocyte recovery in cryopreserved porcine articular cartilage after bone carrier alteration.
    Jomha NM; Anoop PC; McGann LE
    Cryo Letters; 2002; 23(4):263-8. PubMed ID: 12391487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryopreservation of articular cartilage. Part 2: mechanisms of cryoinjury.
    Pegg DE; Wang L; Vaughan D; Hunt CJ
    Cryobiology; 2006 Jun; 52(3):347-59. PubMed ID: 16527262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability, proliferation and phenotype maintenance in cryopreserved human iliac apophyseal chondrocytes.
    Rajagopal K; Chilbule SK; Madhuri V
    Cell Tissue Bank; 2014 Mar; 15(1):153-63. PubMed ID: 23934174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondrocyte Viability of Particulated Porcine Articular Cartilage Is Maintained in Tissue Storage After Cryoprotectant Exposure, Vitrification, and Tissue Warming.
    Crisol M; Wu K; Congdon B; Skene-Arnold TD; Laouar L; Elliott JAW; Jomha NM
    Cartilage; 2024 Jun; 15(2):139-146. PubMed ID: 37148124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation of articular cartilage. Part 1: conventional cryopreservation methods.
    Pegg DE; Wusteman MC; Wang L
    Cryobiology; 2006 Jun; 52(3):335-46. PubMed ID: 16524570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A liquidus tracking approach to the cryopreservation of human cartilage allografts.
    Kay AG; Hoyland JA; Rooney P; Kearney JN; Pegg DE
    Cryobiology; 2015 Aug; 71(1):77-84. PubMed ID: 26012701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of articular cartilage.
    Abazari A; Jomha NM; Elliott JA; McGann LE
    Cryobiology; 2013 Jun; 66(3):201-9. PubMed ID: 23499618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming growth factor alpha suppression of articular chondrocyte phenotype and Sox9 expression in a rat model of osteoarthritis.
    Appleton CT; Usmani SE; Bernier SM; Aigner T; Beier F
    Arthritis Rheum; 2007 Nov; 56(11):3693-705. PubMed ID: 17968906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage.
    Aigner T; Hemmel M; Neureiter D; Gebhard PM; Zeiler G; Kirchner T; McKenna L
    Arthritis Rheum; 2001 Jun; 44(6):1304-12. PubMed ID: 11407689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreserved articular chondrocytes grow in culture, maintain cartilage phenotype, and synthesize matrix components.
    Schachar N; Nagao M; Matsuyama T; McAllister D; Ishii S
    J Orthop Res; 1989; 7(3):344-51. PubMed ID: 2703927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degree of degeneration and chondroitinase ABC treatment of human articular cartilage affect adhesion of chondrocytes.
    Jo CH; Kim EM; Ahn HJ; Kim HJ; Seong SC; Lee MC
    Tissue Eng; 2006 Jan; 12(1):167-76. PubMed ID: 16499453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation & cryo-preservation of human foetal articular chondrocytes.
    Vishwakarma GK; Raj GA; Lamba MS; Bhatia CK; Bhatia A
    Indian J Med Res; 1993 Dec; 98():309-13. PubMed ID: 8132236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.