These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 22803525)

  • 1. Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation.
    Mátyus E; Reiher M
    J Chem Phys; 2012 Jul; 137(2):024104. PubMed ID: 22803525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the calculation of resonances in pre-Born-Oppenheimer molecular structure theory.
    Mátyus E
    J Phys Chem A; 2013 Aug; 117(32):7195-206. PubMed ID: 23675889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Born-Oppenheimer variational calculation of the ground-state vibrational spectrum of LiH+.
    Bubin S; Adamowicz L
    J Chem Phys; 2006 Aug; 125(6):64309. PubMed ID: 16942288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
    Simmen B; Mátyus E; Reiher M
    J Chem Phys; 2014 Oct; 141(15):154105. PubMed ID: 25338879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer program ATOM-MOL-nonBO for performing calculations of ground and excited states of atoms and molecules without assuming the Born-Oppenheimer approximation using all-particle complex explicitly correlated Gaussian functions.
    Bubin S; Adamowicz L
    J Chem Phys; 2020 May; 152(20):204102. PubMed ID: 32486658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct non-Born-Oppenheimer variational calculations of all bound vibrational states corresponding to the first rotational excitation of D2 performed with explicitly correlated all-particle Gaussian functions.
    Sharkey KL; Kirnosov N; Adamowicz L
    J Chem Phys; 2015 May; 142(17):174307. PubMed ID: 25956100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm for non-Born-Oppenheimer quantum mechanical variational calculations of N = 1 rotationally excited states of diatomic molecules using all-particle explicitly correlated Gaussian functions.
    Sharkey KL; Kirnosov N; Adamowicz L
    J Chem Phys; 2013 Oct; 139(16):164119. PubMed ID: 24182016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Darwin and mass-velocity relativistic corrections in non-Born-Oppenheimer variational calculations.
    Kedziera D; Stanke M; Bubin S; Barysz M; Adamowicz L
    J Chem Phys; 2006 Aug; 125(8):084303. PubMed ID: 16965008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithm for nonrelativistic quantum-mechanical finite-nuclear-mass variational calculations of nitrogen atom in L = 0, M = 0 states using all-electrons explicitly correlated Gaussian basis functions.
    Sharkey KL; Adamowicz L
    J Chem Phys; 2014 May; 140(17):174112. PubMed ID: 24811630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicitly correlated Gaussian functions with shifted-center and projection techniques in pre-Born-Oppenheimer calculations.
    Muolo A; Mátyus E; Reiher M
    J Chem Phys; 2018 Nov; 149(18):184105. PubMed ID: 30441913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate non-Born-Oppenheimer calculations of the complete pure vibrational spectrum of D2 with including relativistic corrections.
    Bubin S; Stanke M; Adamowicz L
    J Chem Phys; 2011 Aug; 135(7):074110. PubMed ID: 21861559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical energy gradient used in variational Born-Oppenheimer calculations with all-electron explicitly correlated Gaussian functions for molecules containing one π electron.
    Tung WC; Pavanello M; Sharkey KL; Kirnosov N; Adamowicz L
    J Chem Phys; 2013 Mar; 138(12):124101. PubMed ID: 23556703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.
    Bubin S; Adamowicz L
    J Chem Phys; 2008 Mar; 128(11):114107. PubMed ID: 18361554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Born-Oppenheimer calculations of the BH molecule.
    Bubin S; Stanke M; Adamowicz L
    J Chem Phys; 2009 Jul; 131(4):044128. PubMed ID: 19655858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Born-Oppenheimer calculations of the pure vibrational spectrum of HeH+.
    Pavanello M; Bubin S; Molski M; Adamowicz L
    J Chem Phys; 2005 Sep; 123(10):104306. PubMed ID: 16178596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-accuracy calculations of the ground, 1 1A1', and the 2 1A1', 2 3A1', and 1 1E' excited states of H3+.
    Pavanello M; Adamowicz L
    J Chem Phys; 2009 Jan; 130(3):034104. PubMed ID: 19173507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refinement of the experimental energy levels of higher 2D Rydberg states of the lithium atom with very accurate quantum mechanical calculations.
    Sharkey KL; Bubin S; Adamowicz L
    J Chem Phys; 2011 May; 134(19):194114. PubMed ID: 21599051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge asymmetry in HD+.
    Bubin S; Bednarz E; Adamowicz L
    J Chem Phys; 2005 Jan; 122(4):41102. PubMed ID: 15740227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.
    Stanke M; Kedziera D; Bubin S; Adamowicz L
    J Chem Phys; 2007 Oct; 127(13):134107. PubMed ID: 17919011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.