These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22803528)

  • 1. Projection of two-dimensional diffusion in a curved midline and narrow varying width channel onto the longitudinal dimension.
    Dagdug L; Pineda I
    J Chem Phys; 2012 Jul; 137(2):024107. PubMed ID: 22803528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion in narrow channels on curved manifolds.
    Chacón-Acosta G; Pineda I; Dagdug L
    J Chem Phys; 2013 Dec; 139(21):214115. PubMed ID: 24320372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional diffusion biased by a transverse gravitational force in an asymmetric channel: Reduction to an effective one-dimensional description.
    Pompa-García I; Dagdug L
    Phys Rev E; 2021 Oct; 104(4-1):044118. PubMed ID: 34781435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion in two-dimensional conical varying width channels: comparison of analytical and numerical results.
    Pineda I; Alvarez-Ramirez J; Dagdug L
    J Chem Phys; 2012 Nov; 137(17):174103. PubMed ID: 23145713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion in a two-dimensional channel with curved midline and varying width: reduction to an effective one-dimensional description.
    Bradley RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061142. PubMed ID: 20365153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles.
    Chávez Y; Chacón-Acosta G; Dagdug L
    J Phys Condens Matter; 2018 May; 30(19):194001. PubMed ID: 29583127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing corrections to the Fick-Jacobs equation.
    Dorfman KD; Yariv E
    J Chem Phys; 2014 Jul; 141(4):044118. PubMed ID: 25084892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of diffusion in a channel with soft walls.
    Kalinay P; Percus JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031109. PubMed ID: 21517456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion in a tube of varying cross section: numerical study of reduction to effective one-dimensional description.
    Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    J Chem Phys; 2007 Apr; 126(13):134706. PubMed ID: 17430055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When is the next extending of Fick-Jacobs equation necessary?
    Kalinay P
    J Chem Phys; 2013 Aug; 139(5):054116. PubMed ID: 23927252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Two definitions of the hopping time in a confined fluid of finite particles" [J. Chem. Phys. 129, 154117 (2008)].
    Mon KK
    J Chem Phys; 2011 Apr; 134(13):137101. PubMed ID: 21476778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the description of Brownian particles in confinement on a non-Cartesian coordinates basis.
    Dagdug L; García-Chung AA; Chacón-Acosta G
    J Chem Phys; 2016 Aug; 145(7):074105. PubMed ID: 27544085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized method calculating the effective diffusion coefficient in periodic channels.
    Kalinay P
    J Chem Phys; 2015 Jan; 142(1):014106. PubMed ID: 25573552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximations of the generalized Fick-Jacobs equation.
    Kalinay P; Percus JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021103. PubMed ID: 18850782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective one-dimensional description of confined diffusion biased by a transverse gravitational force.
    Kalinay P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011118. PubMed ID: 21867124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projection of two-dimensional diffusion in a narrow channel onto the longitudinal dimension.
    Kalinay P; Percus JK
    J Chem Phys; 2005 May; 122(20):204701. PubMed ID: 15945758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimensional reduction of a general advection-diffusion equation in 2D channels.
    Kalinay P; Slanina F
    J Phys Condens Matter; 2018 Jun; 30(24):244002. PubMed ID: 29708500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current of interacting particles inside a channel of exponential cavities: Application of a modified Fick-Jacobs equation.
    Suárez G; Hoyuelos M; Mártin H
    Phys Rev E; 2016 Jun; 93(6):062129. PubMed ID: 27415230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fick-Jacobs equation for channels over three-dimensional curves.
    Valero Valdes C; Herrera Guzman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052141. PubMed ID: 25493773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of finite-size particles in two-dimensional channels with random wall configurations.
    Bauer M; Godec A; Metzler R
    Phys Chem Chem Phys; 2014 Apr; 16(13):6118-28. PubMed ID: 24556939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.