These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22803595)

  • 1. Mechanisms of budding of nanoscale particles through lipid bilayers.
    Ruiz-Herrero T; Velasco E; Hagan MF
    J Phys Chem B; 2012 Aug; 116(32):9595-603. PubMed ID: 22803595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing synthetic vesicles that engulf nanoscopic particles.
    Smith KA; Jasnow D; Balazs AC
    J Chem Phys; 2007 Aug; 127(8):084703. PubMed ID: 17764280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A statistical-thermodynamic model of viral budding.
    Tzlil S; Deserno M; Gelbart WM; Ben-Shaul A
    Biophys J; 2004 Apr; 86(4):2037-48. PubMed ID: 15041646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles.
    Yu Q; Dasgupta S; Auth T; Gompper G
    Nano Lett; 2020 Mar; 20(3):1662-1668. PubMed ID: 32046489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge renormalization of bilayer elastic properties.
    Sknepnek R; Vernizzi G; Olvera de la Cruz M
    J Chem Phys; 2012 Sep; 137(10):104905. PubMed ID: 22979888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy.
    Kabbani AM; Kelly CV
    Biophys J; 2017 Oct; 113(8):1795-1806. PubMed ID: 29045873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrapping of a nanowire by a supported lipid membrane.
    Khosravanizadeh A; Sens P; Mohammad-Rafiee F
    Soft Matter; 2019 Sep; 15(37):7490-7500. PubMed ID: 31513228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Budding of an Adhesive Elastic Particle out of a Lipid Vesicle.
    Yi X; Gao H
    ACS Biomater Sci Eng; 2017 Nov; 3(11):2954-2961. PubMed ID: 33418715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Computational Method for Membrane Compressibility: Bilayer Mechanical Thickness Revisited.
    Doktorova M; LeVine MV; Khelashvili G; Weinstein H
    Biophys J; 2019 Feb; 116(3):487-502. PubMed ID: 30665693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane.
    Guo R; Mao J; Yan LT
    ACS Nano; 2013 Dec; 7(12):10646-53. PubMed ID: 24255955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature changes of bilayer membranes studied by computer simulations.
    Yang K; Yuan B; Ma YQ
    J Phys Chem B; 2012 Jun; 116(24):7196-202. PubMed ID: 22646151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer.
    Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: a two-dimensional study.
    Yi X; Gao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062712. PubMed ID: 25019819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.