These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22803595)

  • 21. Partitioning of nanoscale particles on a heterogeneous multicomponent lipid bilayer.
    Yang K; Yang R; Tian X; He K; Filbrun SL; Fang N; Ma Y; Yuan B
    Phys Chem Chem Phys; 2018 Nov; 20(44):28241-28248. PubMed ID: 30398246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Characterization of Protein-Lipid Interactions by Free Energy Simulation between Binary Bilayers.
    Park S; Yeom MS; Andersen OS; Pastor RW; Im W
    J Chem Theory Comput; 2019 Nov; 15(11):6491-6503. PubMed ID: 31560853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity.
    Wang S; Guo H; Li Y; Li X
    Nanoscale; 2019 Mar; 11(9):4025-4034. PubMed ID: 30768108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Budding dynamics of individual domains in multicomponent membranes simulated by N-varied dissipative particle dynamics.
    Hong B; Qiu F; Zhang H; Yang Y
    J Phys Chem B; 2007 May; 111(21):5837-49. PubMed ID: 17487994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.
    Chen X; Tieleman DP; Liang Q
    Nanoscale; 2018 Feb; 10(5):2481-2491. PubMed ID: 29340405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing smectic liquid-crystal continuum models for elastic bilayer deformations.
    Lee KI; Pastor RW; Andersen OS; Im W
    Chem Phys Lipids; 2013 Apr; 169():19-26. PubMed ID: 23348553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations.
    Kessel A; Ben-Tal N; May S
    Biophys J; 2001 Aug; 81(2):643-58. PubMed ID: 11463613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of gold nanoparticle on structure and fluidity of lipid membrane.
    Mhashal AR; Roy S
    PLoS One; 2014; 9(12):e114152. PubMed ID: 25469786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wrapping of nanoparticles by membranes.
    Bahrami AH; Raatz M; Agudo-Canalejo J; Michel R; Curtis EM; Hall CK; Gradzielski M; Lipowsky R; Weikl TR
    Adv Colloid Interface Sci; 2014 Jun; 208():214-24. PubMed ID: 24703299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations.
    Gupta R; Badhe Y; Mitragotri S; Rai B
    Nanoscale; 2020 Mar; 12(11):6318-6333. PubMed ID: 32133467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why Enveloped Viruses Need Cores-The Contribution of a Nucleocapsid Core to Viral Budding.
    Lázaro GR; Mukhopadhyay S; Hagan MF
    Biophys J; 2018 Feb; 114(3):619-630. PubMed ID: 29414708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid bilayers and membrane dynamics: insight into thickness fluctuations.
    Woodka AC; Butler PD; Porcar L; Farago B; Nagao M
    Phys Rev Lett; 2012 Aug; 109(5):058102. PubMed ID: 23006210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of a methodology for determining elastic properties of lipid assemblies from molecular dynamics simulations.
    Johner N; Harries D; Khelashvili G
    BMC Bioinformatics; 2016 Apr; 17():161. PubMed ID: 27071656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent-free coarse-grained lipid model for large-scale simulations.
    Noguchi H
    J Chem Phys; 2011 Feb; 134(5):055101. PubMed ID: 21303161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers.
    McWhirter JL; Ayton G; Voth GA
    Biophys J; 2004 Nov; 87(5):3242-63. PubMed ID: 15347594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of lipid vesicle-membrane interactions by cholesterol.
    Chng CP; Hsia KJ; Huang C
    Soft Matter; 2022 Oct; 18(40):7752-7761. PubMed ID: 36093613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bridging molecular simulation models and elastic theories for amphiphilic membranes.
    Berthault A; Werner M; Baulin VA
    J Chem Phys; 2018 Jul; 149(1):014902. PubMed ID: 29981558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.