These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 22803610)
1. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. Wang C; Huang W; Ying Y; Li S; Secco D; Tyerman S; Whelan J; Shou H New Phytol; 2012 Oct; 196(1):139-148. PubMed ID: 22803610 [TBL] [Abstract][Full Text] [Related]
2. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Lin SI; Santi C; Jobet E; Lacut E; El Kholti N; Karlowski WM; Verdeil JL; Breitler JC; Périn C; Ko SS; Guiderdoni E; Chiou TJ; Echeverria M Plant Cell Physiol; 2010 Dec; 51(12):2119-31. PubMed ID: 21062869 [TBL] [Abstract][Full Text] [Related]
3. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice. Wang C; Yue W; Ying Y; Wang S; Secco D; Liu Y; Whelan J; Tyerman SD; Shou H Plant Physiol; 2015 Dec; 169(4):2822-31. PubMed ID: 26424157 [TBL] [Abstract][Full Text] [Related]
4. Phosphate-dependent regulation of vacuolar trafficking of OsSPX-MFSs is critical for maintaining intracellular phosphate homeostasis in rice. Guo R; Zhang Q; Qian K; Ying Y; Liao W; Gan L; Mao C; Wang Y; Whelan J; Shou H Mol Plant; 2023 Aug; 16(8):1304-1320. PubMed ID: 37464739 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. Guo R; Zhang Q; Ying Y; Liao W; Liu Y; Whelan J; Chuanzao M; Shou H Plant Cell Environ; 2023 Apr; 46(4):1264-1277. PubMed ID: 35909262 [TBL] [Abstract][Full Text] [Related]
6. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). Wang S; Zhang S; Sun C; Xu Y; Chen Y; Yu C; Qian Q; Jiang DA; Qi Y New Phytol; 2014 Jan; 201(1):91-103. PubMed ID: 24111723 [TBL] [Abstract][Full Text] [Related]
7. The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice. Ye Y; Yuan J; Chang X; Yang M; Zhang L; Lu K; Lian X PLoS One; 2015; 10(5):e0126186. PubMed ID: 25970642 [TBL] [Abstract][Full Text] [Related]
8. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Sun S; Gu M; Cao Y; Huang X; Zhang X; Ai P; Zhao J; Fan X; Xu G Plant Physiol; 2012 Aug; 159(4):1571-81. PubMed ID: 22649273 [TBL] [Abstract][Full Text] [Related]
9. The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. Shi J; Hu H; Zhang K; Zhang W; Yu Y; Wu Z; Wu P J Exp Bot; 2014 Mar; 65(3):859-70. PubMed ID: 24368504 [TBL] [Abstract][Full Text] [Related]
10. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Jia H; Ren H; Gu M; Zhao J; Sun S; Zhang X; Chen J; Wu P; Xu G Plant Physiol; 2011 Jul; 156(3):1164-75. PubMed ID: 21502185 [TBL] [Abstract][Full Text] [Related]
11. Silencing Osa-miR827 via CRISPR/Cas9 protects rice against the blast fungus Magnaporthe oryzae. Bundó M; Val-Torregrosa B; Martín-Cardoso H; Ribaya M; Campos-Soriano L; Bach-Pages M; Chiou TJ; San Segundo B Plant Mol Biol; 2024 Sep; 114(5):105. PubMed ID: 39316277 [TBL] [Abstract][Full Text] [Related]
12. Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice. Wang Z; Hu H; Huang H; Duan K; Wu Z; Wu P J Integr Plant Biol; 2009 Jul; 51(7):663-74. PubMed ID: 19566645 [TBL] [Abstract][Full Text] [Related]
13. miR827 orchestrates the regulation of SPX-MFS1 and SPX-MFS5 with the assistance of lncRNA767 to enhance phosphate starvation tolerance and maize development. Chen L; He J; Wang X; Zhang S; Pan J; Peng J; Mo B; Liu L Plant Biotechnol J; 2024 Dec; 22(12):3489-3504. PubMed ID: 39284226 [TBL] [Abstract][Full Text] [Related]
14. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Wang Z; Ruan W; Shi J; Zhang L; Xiang D; Yang C; Li C; Wu Z; Liu Y; Yu Y; Shou H; Mo X; Mao C; Wu P Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14953-8. PubMed ID: 25271318 [TBL] [Abstract][Full Text] [Related]
15. Identification of plant vacuolar transporters mediating phosphate storage. Liu TY; Huang TK; Yang SY; Hong YT; Huang SM; Wang FN; Chiang SF; Tsai SY; Lu WC; Chiou TJ Nat Commun; 2016 Mar; 7():11095. PubMed ID: 27029856 [TBL] [Abstract][Full Text] [Related]
16. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice. Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033 [TBL] [Abstract][Full Text] [Related]
17. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119 [TBL] [Abstract][Full Text] [Related]
18. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativa. Li S; Ying Y; Secco D; Wang C; Narsai R; Whelan J; Shou H Plant Cell Environ; 2017 Aug; 40(8):1487-1499. PubMed ID: 28337762 [TBL] [Abstract][Full Text] [Related]
19. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Lee S; Chiecko JC; Kim SA; Walker EL; Lee Y; Guerinot ML; An G Plant Physiol; 2009 Jun; 150(2):786-800. PubMed ID: 19376836 [TBL] [Abstract][Full Text] [Related]
20. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]