BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22803627)

  • 21. Short read fragment assembly of bacterial genomes.
    Chaisson MJ; Pevzner PA
    Genome Res; 2008 Feb; 18(2):324-30. PubMed ID: 18083777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo fragment assembly with short mate-paired reads: Does the read length matter?
    Chaisson MJ; Brinza D; Pevzner PA
    Genome Res; 2009 Feb; 19(2):336-46. PubMed ID: 19056694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing.
    van Heesch S; Kloosterman WP; Lansu N; Ruzius FP; Levandowsky E; Lee CC; Zhou S; Goldstein S; Schwartz DC; Harkins TT; Guryev V; Cuppen E
    BMC Genomics; 2013 Apr; 14():257. PubMed ID: 23590730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products.
    Nurk S; Bankevich A; Antipov D; Gurevich AA; Korobeynikov A; Lapidus A; Prjibelski AD; Pyshkin A; Sirotkin A; Sirotkin Y; Stepanauskas R; Clingenpeel SR; Woyke T; McLean JS; Lasken R; Tesler G; Alekseyev MA; Pevzner PA
    J Comput Biol; 2013 Oct; 20(10):714-37. PubMed ID: 24093227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OMGS: Optical Map-Based Genome Scaffolding.
    Pan W; Jiang T; Lonardi S
    J Comput Biol; 2020 Apr; 27(4):519-533. PubMed ID: 31794680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SAGE: String-overlap Assembly of GEnomes.
    Ilie L; Haider B; Molnar M; Solis-Oba R
    BMC Bioinformatics; 2014 Sep; 15(1):302. PubMed ID: 25225118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence assembly using next generation sequencing data--challenges and solutions.
    Chin FY; Leung HC; Yiu SM
    Sci China Life Sci; 2014 Nov; 57(11):1140-8. PubMed ID: 25326069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads.
    Kajitani R; Toshimoto K; Noguchi H; Toyoda A; Ogura Y; Okuno M; Yabana M; Harada M; Nagayasu E; Maruyama H; Kohara Y; Fujiyama A; Hayashi T; Itoh T
    Genome Res; 2014 Aug; 24(8):1384-95. PubMed ID: 24755901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational techniques for human genome resequencing using mated gapped reads.
    Carnevali P; Baccash J; Halpern AL; Nazarenko I; Nilsen GB; Pant KP; Ebert JC; Brownley A; Morenzoni M; Karpinchyk V; Martin B; Ballinger DG; Drmanac R
    J Comput Biol; 2012 Mar; 19(3):279-92. PubMed ID: 22175250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter.
    Jackman SD; Vandervalk BP; Mohamadi H; Chu J; Yeo S; Hammond SA; Jahesh G; Khan H; Coombe L; Warren RL; Birol I
    Genome Res; 2017 May; 27(5):768-777. PubMed ID: 28232478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing de novo genome assembly: the long and short of it.
    Narzisi G; Mishra B
    PLoS One; 2011 Apr; 6(4):e19175. PubMed ID: 21559467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.
    Zhang W; Chen J; Yang Y; Tang Y; Shang J; Shen B
    PLoS One; 2011 Mar; 6(3):e17915. PubMed ID: 21423806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GapFiller: a de novo assembly approach to fill the gap within paired reads.
    Nadalin F; Vezzi F; Policriti A
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to apply de Bruijn graphs to genome assembly.
    Compeau PE; Pevzner PA; Tesler G
    Nat Biotechnol; 2011 Nov; 29(11):987-91. PubMed ID: 22068540
    [No Abstract]   [Full Text] [Related]  

  • 37. SEQuel: improving the accuracy of genome assemblies.
    Ronen R; Boucher C; Chitsaz H; Pevzner P
    Bioinformatics; 2012 Jun; 28(12):i188-96. PubMed ID: 22689760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
    Zerbino DR; Birney E
    Genome Res; 2008 May; 18(5):821-9. PubMed ID: 18349386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aligning optical maps to de Bruijn graphs.
    Mukherjee K; Alipanahi B; Kahveci T; Salmela L; Boucher C
    Bioinformatics; 2019 Sep; 35(18):3250-3256. PubMed ID: 30698651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.