These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 22804819)

  • 21. Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics.
    Hong H; Xie Q; Ge W; Qian F; Fang H; Shi L; Su Z; Perkins R; Tong W
    J Chem Inf Model; 2008 Jul; 48(7):1337-44. PubMed ID: 18564836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping Chemical Structures to Markush Structures Using SMIRKS.
    Deng W; Schneider G; So WV
    Mol Inform; 2011 Aug; 30(8):665-71. PubMed ID: 27467258
    [No Abstract]   [Full Text] [Related]  

  • 23. Searching the LILACS database for Portuguese- and Spanish-language randomized trials in physiotherapy was difficult.
    de Freitas AE; Herbert RD; Latimer J; Ferreira PH
    J Clin Epidemiol; 2005 Mar; 58(3):233-7. PubMed ID: 15718111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Searching Fragment Spaces with feature trees.
    Lessel U; Wellenzohn B; Lilienthal M; Claussen H
    J Chem Inf Model; 2009 Feb; 49(2):270-9. PubMed ID: 19434829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Internet resources integrating many small-molecule databases.
    Sitzmann M; Filippov IV; Nicklaus MC
    SAR QSAR Environ Res; 2008; 19(1-2):1-9. PubMed ID: 18311630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.
    Wallace AC; Borkakoti N; Thornton JM
    Protein Sci; 1997 Nov; 6(11):2308-23. PubMed ID: 9385633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a compound class-directed similarity coefficient that accounts for molecular complexity effects in fingerprint searching.
    Wang Y; Bajorath J
    J Chem Inf Model; 2009 Jun; 49(6):1369-76. PubMed ID: 19480406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics.
    Helmy M; Sugiyama N; Tomita M; Ishihama Y
    Genes Cells; 2012 Aug; 17(8):633-44. PubMed ID: 22686349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CLIP: similarity searching of 3D databases using clique detection.
    Rhodes N; Willett P; Calvet A; Dunbar JB; Humblet C
    J Chem Inf Comput Sci; 2003; 43(2):443-8. PubMed ID: 12653507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.
    Tai D; Fang J
    J Chem Inf Model; 2012 Aug; 52(8):1926-35. PubMed ID: 22849555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Online information retrieval in pharmacy and related fields.
    Perry CA
    Am J Hosp Pharm; 1986 Jun; 43(6):1509-24. PubMed ID: 3524207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsupervised 3D ring template searching as an ideas generator for scaffold hopping: use of the LAMDA, RigFit, and field-based similarity search (FBSS) methods.
    Bohl M; Loeprecht B; Wendt B; Heritage T; Richmond NJ; Willett P
    J Chem Inf Model; 2006; 46(5):1882-90. PubMed ID: 16995717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors.
    Renner S; Schwab CH; Gasteiger J; Schneider G
    J Chem Inf Model; 2006; 46(6):2324-32. PubMed ID: 17125176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mining a chemical database for fragment co-occurrence: discovery of "chemical clichés".
    Lameijer EW; Kok JN; Bäck T; Ijzerman AP
    J Chem Inf Model; 2006; 46(2):553-62. PubMed ID: 16562983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Database organization and searching with E-State indices.
    Kier LB; Hall LH
    SAR QSAR Environ Res; 2001; 12(1-2):55-74. PubMed ID: 11697060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical database preparation for compound acquisition or virtual screening.
    Bologa CG; Olah MM; Oprea TI
    Methods Mol Biol; 2006; 316():375-88. PubMed ID: 16671410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representation of chemical information in OASIS centralized 3D database for existing chemicals.
    Nikolov N; Grancharov V; Stoyanova G; Pavlov T; Mekenyan O
    J Chem Inf Model; 2006; 46(6):2537-51. PubMed ID: 17125194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Query Chem: a Google-powered web search combining text and chemical structures.
    Klekota J; Roth FP; Schreiber SL
    Bioinformatics; 2006 Jul; 22(13):1670-3. PubMed ID: 16672261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Searching techniques for databases of two- and three-dimensional chemical structures.
    Willett P
    J Med Chem; 2005 Jun; 48(13):4183-99. PubMed ID: 15974568
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.