These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22805000)

  • 1. COSMOsar3D: molecular field analysis based on local COSMO σ-profiles.
    Klamt A; Thormann M; Wichmann K; Tosco P
    J Chem Inf Model; 2012 Aug; 52(8):2157-64. PubMed ID: 22805000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COSMOsim3D: 3D-similarity and alignment based on COSMO polarization charge densities.
    Thormann M; Klamt A; Wichmann K
    J Chem Inf Model; 2012 Aug; 52(8):2149-56. PubMed ID: 22804925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-QSAR based on quantum-chemical molecular fields: toward an improved description of halogen interactions.
    Güssregen S; Matter H; Hessler G; Müller M; Schmidt F; Clark T
    J Chem Inf Model; 2012 Sep; 52(9):2441-53. PubMed ID: 22917472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COSMOsim: bioisosteric similarity based on COSMO-RS sigma profiles.
    Thormann M; Klamt A; Hornig M; Almstetter M
    J Chem Inf Model; 2006; 46(3):1040-53. PubMed ID: 16711723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QMQSAR: utilization of a semiempirical probe potential in a field-based QSAR method.
    Dixon S; Merz KM; Lauri G; Ianni JC
    J Comput Chem; 2005 Jan; 26(1):23-34. PubMed ID: 15526326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Another brick in the wall. Validation of the σ1 receptor 3D model by computer-assisted design, synthesis, and activity of new σ1 ligands.
    Laurini E; Marson D; Dal Col V; Fermeglia M; Mamolo MG; Zampieri D; Vio L; Pricl S
    Mol Pharm; 2012 Nov; 9(11):3107-26. PubMed ID: 23020867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase.
    Venkatarangan P; Hopfinger AJ
    J Med Chem; 1999 Jun; 42(12):2169-79. PubMed ID: 10377222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR.
    Totrov M
    Chem Biol Drug Des; 2008 Jan; 71(1):15-27. PubMed ID: 18069986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
    Potemkin AV; Grishina MA; Potemkin VA
    Curr Drug Discov Technol; 2017; 14(3):181-205. PubMed ID: 28176631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of scoring functions using 3D molecular fields. Mapping the diacyl-hydrazine-binding pocket of an insect ecdysone receptor.
    Bordas B; Belai I; Lopata A; Szanto Z
    J Chem Inf Model; 2007; 47(1):176-85. PubMed ID: 17238263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.
    Pérez C; Pastor M; Ortiz AR; Gago F
    J Med Chem; 1998 Mar; 41(6):836-52. PubMed ID: 9526559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical associations ligand-residue: their role to predict flavonoid binding sites in proteins.
    Rolo-Naranjo A; Codorniu-Hernández E; Ferro N
    J Chem Inf Model; 2010 May; 50(5):924-33. PubMed ID: 20373791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating molecular shape into the alignment-free Grid-Independent Descriptors.
    Fontaine F; Pastor M; Sanz F
    J Med Chem; 2004 May; 47(11):2805-15. PubMed ID: 15139758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based quantitative structure--activity relationship modeling of estrogen receptor β-ligands.
    Dong X; Hilliard SG; Zheng W
    Future Med Chem; 2011 Jun; 3(8):933-45. PubMed ID: 21707397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reassessment of Hammett σ as an effective parameter representing intermolecular interaction energy-links between traditional and modern QSAR approaches.
    Yoshida T; Shimizu M; Harada M; Hitaoka S; Chuman H
    Bioorg Med Chem Lett; 2012 Jan; 22(1):124-8. PubMed ID: 22172696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of novel quinazolinone derivatives as inhibitors for 5HT7 receptor.
    Chitta A; Jatavath MB; Fatima S; Manga V
    J Recept Signal Transduct Res; 2012 Feb; 32(1):3-16. PubMed ID: 22171569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local indices for similarity analysis (LISA)-a 3D-QSAR formalism based on local molecular similarity.
    Verma J; Malde A; Khedkar S; Iyer R; Coutinho E
    J Chem Inf Model; 2009 Dec; 49(12):2695-707. PubMed ID: 19994892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of blood-brain partitioning and human serum albumin binding based on COSMO-RS sigma-moments.
    Wichmann K; Diedenhofen M; Klamt A
    J Chem Inf Model; 2007; 47(1):228-33. PubMed ID: 17238268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-QSAR predictions for α-cyclodextrin binding constants using quantum mechanically based descriptors.
    Linden L; Goss KU; Endo S
    Chemosphere; 2017 Feb; 169():693-699. PubMed ID: 27914354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.