These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 22805060)
1. Dopamine and gamma band synchrony in schizophrenia--insights from computational and empirical studies. Kömek K; Bard Ermentrout G; Walker CP; Cho RY Eur J Neurosci; 2012 Jul; 36(2):2146-55. PubMed ID: 22805060 [TBL] [Abstract][Full Text] [Related]
3. Computational study of NMDA conductance and cortical oscillations in schizophrenia. Kirli KK; Ermentrout GB; Cho RY Front Comput Neurosci; 2014; 8():133. PubMed ID: 25368573 [TBL] [Abstract][Full Text] [Related]
4. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex. Lew SE; Tseng KY Neuropsychopharmacology; 2014 Dec; 39(13):3067-76. PubMed ID: 24975022 [TBL] [Abstract][Full Text] [Related]
5. Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation. Tanaka S BMC Neurosci; 2008 Apr; 9():41. PubMed ID: 18439259 [TBL] [Abstract][Full Text] [Related]
6. The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: insights from computational modeling. Spencer KM Front Hum Neurosci; 2009; 3():33. PubMed ID: 19876408 [TBL] [Abstract][Full Text] [Related]
8. Resonant Interneurons Can Increase Robustness of Gamma Oscillations. Tikidji-Hamburyan RA; Martínez JJ; White JA; Canavier CC J Neurosci; 2015 Nov; 35(47):15682-95. PubMed ID: 26609160 [TBL] [Abstract][Full Text] [Related]
9. Sparse gamma rhythms arising through clustering in adapting neuronal networks. Kilpatrick ZP; Ermentrout B PLoS Comput Biol; 2011 Nov; 7(11):e1002281. PubMed ID: 22125486 [TBL] [Abstract][Full Text] [Related]
10. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Yang CR; Seamans JK; Gorelova N Neuropsychopharmacology; 1999 Aug; 21(2):161-94. PubMed ID: 10432466 [TBL] [Abstract][Full Text] [Related]
11. Amyloid β causes excitation/inhibition imbalance through dopamine receptor 1-dependent disruption of fast-spiking GABAergic input in anterior cingulate cortex. Ren SQ; Yao W; Yan JZ; Jin C; Yin JJ; Yuan J; Yu S; Cheng Z Sci Rep; 2018 Jan; 8(1):302. PubMed ID: 29321592 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous network dynamics in an excitatory-inhibitory network model by distinct intrinsic mechanisms in the fast spiking interneurons. Dasgupta D; Sikdar SK Brain Res; 2019 Jul; 1714():27-44. PubMed ID: 30771318 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. Gorelova N; Seamans JK; Yang CR J Neurophysiol; 2002 Dec; 88(6):3150-66. PubMed ID: 12466437 [TBL] [Abstract][Full Text] [Related]
14. Generation of low-gamma oscillations in a GABAergic network model of the striatum. Wu Z; Guo A; Fu X Neural Netw; 2017 Nov; 95():72-90. PubMed ID: 28910740 [TBL] [Abstract][Full Text] [Related]
15. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Gonzalez-Burgos G; Cho RY; Lewis DA Biol Psychiatry; 2015 Jun; 77(12):1031-40. PubMed ID: 25863358 [TBL] [Abstract][Full Text] [Related]
16. Desynchronization of fast-spiking interneurons reduces β-band oscillations and imbalance in firing in the dopamine-depleted striatum. Damodaran S; Cressman JR; Jedrzejewski-Szmek Z; Blackwell KT J Neurosci; 2015 Jan; 35(3):1149-59. PubMed ID: 25609629 [TBL] [Abstract][Full Text] [Related]
17. Input and frequency-specific entrainment of postsynaptic firing by IPSPs of perisomatic or dendritic origin. Tamás G; Szabadics J; Lörincz A; Somogyi P Eur J Neurosci; 2004 Nov; 20(10):2681-90. PubMed ID: 15548211 [TBL] [Abstract][Full Text] [Related]
18. Synchronization of firing in cortical fast-spiking interneurons at gamma frequencies: a phase-resetting analysis. Gouwens NW; Zeberg H; Tsumoto K; Tateno T; Aihara K; Robinson HP PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20941393 [TBL] [Abstract][Full Text] [Related]
19. Sparse pallidal connections shape synchrony in a network model of the basal ganglia. Schwab BC; van Wezel RJA; van Gils SA Eur J Neurosci; 2017 Apr; 45(8):1000-1012. PubMed ID: 27350120 [TBL] [Abstract][Full Text] [Related]
20. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Wallenstein GV; Hasselmo ME J Neurophysiol; 1997 Jul; 78(1):393-408. PubMed ID: 9242288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]