These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 22805203)
1. Highly selective microbial transformation of major ginsenoside Rb1 to gypenoside LXXV by Esteya vermicola CNU120806. Hou JG; Xue JJ; Sun MQ; Wang CY; Liu L; Zhang DL; Lee MR; Gu LJ; Wang CL; Wang YB; Zheng Y; Li W; Sung CK J Appl Microbiol; 2012 Oct; 113(4):807-14. PubMed ID: 22805203 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property. Cui CH; Kim DJ; Jung SC; Kim SC; Im WT Molecules; 2017 May; 22(5):. PubMed ID: 28534845 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. An DS; Cui CH; Lee HG; Wang L; Kim SC; Lee ST; Jin F; Yu H; Chin YW; Lee HK; Im WT; Kim SG Appl Environ Microbiol; 2010 Sep; 76(17):5827-36. PubMed ID: 20622122 [TBL] [Abstract][Full Text] [Related]
4. Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806. Hou J; Xue J; Wang C; Liu L; Zhang D; Wang Z; Li W; Zheng Y; Sung C World J Microbiol Biotechnol; 2012 Apr; 28(4):1807-11. PubMed ID: 22805964 [TBL] [Abstract][Full Text] [Related]
5. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII. Shin KC; Seo MJ; Oh HJ; Oh DK Biotechnol Lett; 2014 Jun; 36(6):1287-93. PubMed ID: 24563303 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of gypenoside XVII to compound K by a recombinant β-glucosidase. Zhong FL; Dong WW; Wu S; Jiang J; Yang DC; Li D; Quan LH Biotechnol Lett; 2016 Jul; 38(7):1187-93. PubMed ID: 27060008 [TBL] [Abstract][Full Text] [Related]
7. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. Cheng LQ; Na JR; Kim MK; Bang MH; Yang DC J Microbiol Biotechnol; 2007 Dec; 17(12):1937-43. PubMed ID: 18167439 [TBL] [Abstract][Full Text] [Related]
8. Ginsenoside Rd production from the major ginsenoside Rb(1) by beta-glucosidase from Thermus caldophilus. Son JW; Kim HJ; Oh DK Biotechnol Lett; 2008 Apr; 30(4):713-6. PubMed ID: 17989924 [TBL] [Abstract][Full Text] [Related]
9. Bioconversion of ginsenosides Rb(1), Rb(2), Rc and Rd by novel β-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. Wang L; Liu QM; Sung BH; An DS; Lee HG; Kim SG; Kim SC; Lee ST; Im WT J Biotechnol; 2011 Nov; 156(2):125-33. PubMed ID: 21906640 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation of ginsenoside Rb1 via the gypenoside pathway by human gut bacteria. Shen H; Leung WI; Ruan JQ; Li SL; Lei JP; Wang YT; Yan R Chin Med; 2013 Nov; 8(1):22. PubMed ID: 24267405 [TBL] [Abstract][Full Text] [Related]
11. Gypenoside biotransformation into ginsenoside F2 by endophytic Zhang X; Xie Y; Dai Z; Liang Y; Zhu C; Su C; Song L; Wang K; Li J; Wei X Nat Prod Res; 2024 Sep; 38(17):3086-3092. PubMed ID: 37157839 [TBL] [Abstract][Full Text] [Related]
12. Biotransformation of ginsenoside Rb1 to ginsenoside C-K by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng. Fu Y; Yin ZH; Wu LP; Yin CR Lett Appl Microbiol; 2016 Sep; 63(3):196-201. PubMed ID: 27316666 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Cui CH; Kim SC; Im WT Appl Microbiol Biotechnol; 2013 Jan; 97(2):649-59. PubMed ID: 22911093 [TBL] [Abstract][Full Text] [Related]
14. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Cheng LQ; Na JR; Bang MH; Kim MK; Yang DC Phytochemistry; 2008 Jan; 69(1):218-24. PubMed ID: 17764709 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model. Li J; Li R; Li N; Zheng F; Dai Y; Ge Y; Yue H; Yu S J Pharm Biomed Anal; 2018 Sep; 158():451-460. PubMed ID: 30032757 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. Shin KC; Oh DK J Biotechnol; 2014 Feb; 172():30-7. PubMed ID: 24333127 [TBL] [Abstract][Full Text] [Related]
17. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase. Kim SY; Lee HN; Hong SJ; Kang HJ; Cho JY; Kim D; Ameer K; Kim YM Enzyme Microb Technol; 2022 Jan; 153():109941. PubMed ID: 34785432 [TBL] [Abstract][Full Text] [Related]
18. Co-transformation of Panax major ginsenosides Rb₁ and Rg₁ to minor ginsenosides C-K and F₁ by Cladosporium cladosporioides. Wu L; Jin Y; Yin C; Bai L J Ind Microbiol Biotechnol; 2012 Apr; 39(4):521-7. PubMed ID: 22270887 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic Biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by Recombinant β-glucosidase from Flavobacterium johnsoniae. Hong H; Cui CH; Kim JK; Jin FX; Kim SC; Im WT J Ginseng Res; 2012 Oct; 36(4):418-24. PubMed ID: 23717145 [TBL] [Abstract][Full Text] [Related]
20. Production of Gypenoside XVII from Ginsenoside Rb1 by Enzymatic Transformation and Their Anti-Inflammatory Activity In Vitro and In Vivo. Zhou K; Zhang Y; Zhou Y; Xu M; Yu S Molecules; 2023 Oct; 28(19):. PubMed ID: 37836844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]