These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22805296)

  • 1. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip.
    Grossmann G; Meier M; Cartwright HN; Sosso D; Quake SR; Ehrhardt DW; Frommer WB
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RootChip: an integrated microfluidic chip for plant science.
    Grossmann G; Guo WJ; Ehrhardt DW; Frommer WB; Sit RV; Quake SR; Meier M
    Plant Cell; 2011 Dec; 23(12):4234-40. PubMed ID: 22186371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic systems for plant root imaging.
    Guichard M; Bertran Garcia de Olalla E; Stanley CE; Grossmann G
    Methods Cell Biol; 2020; 160():381-404. PubMed ID: 32896330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene.
    Binder BM
    Methods Mol Biol; 2017; 1573():211-222. PubMed ID: 28293848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels.
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; van Swaay D; Grossmann G
    New Phytol; 2018 Feb; 217(3):1357-1369. PubMed ID: 29125191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.
    Lanquar V; Grossmann G; Vinkenborg JL; Merkx M; Thomine S; Frommer WB
    New Phytol; 2014 Apr; 202(1):198-208. PubMed ID: 24372442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bi-directional Dual-flow-RootChip for Physiological Analysis of Plant Primary Roots Under Asymmetric Perfusion of Stress Treatments.
    Allan C; Elliot B; Nock V; Meisrimler CN
    Bio Protoc; 2023 Aug; 13(15):e4764. PubMed ID: 37575387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip.
    Meier M; Lucchetta EM; Ismagilov RF
    Lab Chip; 2010 Aug; 10(16):2147-53. PubMed ID: 20544086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy.
    Wuyts N; Bengough AG; Roberts TJ; Du C; Bransby MF; McKenna SJ; Valentine TA
    Planta; 2011 Oct; 234(4):769-84. PubMed ID: 21630041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic device enabled quantitative time-lapse microscopic-photography for phenotyping vegetative and reproductive phases in Fusarium virguliforme, which is pathogenic to soybean.
    Marshall J; Qiao X; Baumbach J; Xie J; Dong L; Bhattacharyya MK
    Sci Rep; 2017 Mar; 7():44365. PubMed ID: 28295054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term live-cell imaging approaches to study lateral root formation in Arabidopsis thaliana.
    Goh T
    Microscopy (Oxf); 2019 Feb; 68(1):4-12. PubMed ID: 30476201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
    Bascom CS; Wu SZ; Nelson K; Oakey J; Bezanilla M
    Plant Physiol; 2016 Sep; 172(1):28-37. PubMed ID: 27406170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light Sheet Fluorescence Microscopy Optimized for Long-Term Imaging of Arabidopsis Root Development.
    Baesso P; Randall RS; Sena G
    Methods Mol Biol; 2018; 1761():145-163. PubMed ID: 29525955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth Rate Normalization Method to Assess Gravitropic Root Growth.
    Schöller M; Sarkel E; Kleine-Vehn J; Feraru E
    Methods Mol Biol; 2018; 1761():199-208. PubMed ID: 29525959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods.
    Wells DM; French AP; Naeem A; Ishaq O; Traini R; Hijazi HI; Bennett MJ; Pridmore TP
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1595):1517-24. PubMed ID: 22527394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAIL1 is essential for development of the primary root but not of anchor roots.
    Ühlken C; Hoth S; Weingartner M
    Plant Signal Behav; 2014; 9(11):e976477. PubMed ID: 25482792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.
    Tanaka N; Kato M; Tomioka R; Kurata R; Fukao Y; Aoyama T; Maeshima M
    J Exp Bot; 2014 Apr; 65(6):1497-512. PubMed ID: 24501179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time tracking of root hair nucleus morphodynamics using a microfluidic approach.
    Singh G; Pereira D; Baudrey S; Hoffmann E; Ryckelynck M; Asnacios A; Chabouté ME
    Plant J; 2021 Oct; 108(2):303-313. PubMed ID: 34562320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana.
    Hubberten HM; Drozd A; Tran BV; Hesse H; Hoefgen R
    Plant J; 2012 Nov; 72(4):625-35. PubMed ID: 22775482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of
    Cousins EA; Murren CJ
    Am J Bot; 2017 Dec; 104(12):1802-1815. PubMed ID: 29196342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.