These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22805427)

  • 21. The MEMPACK alpha-helical transmembrane protein structure prediction server.
    Nugent T; Ward S; Jones DT
    Bioinformatics; 2011 May; 27(10):1438-9. PubMed ID: 21349872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides.
    Liou YF; Vasylenko T; Yeh CL; Lin WC; Chiu SH; Charoenkwan P; Shu LS; Ho SY; Huang HL
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S6. PubMed ID: 26677931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors.
    Morrill GA; Kostellow AB; Gupta RK
    Steroids; 2013 Dec; 78(12-13):1233-44. PubMed ID: 24012561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transmembrane helices in "classical" nuclear reproductive steroid receptors: a perspective.
    Morrill GA; Kostellow AB; Gupta RK
    Nucl Recept Signal; 2015; 13():e003. PubMed ID: 26430393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MeMotif: a database of linear motifs in alpha-helical transmembrane proteins.
    Marsico A; Scheubert K; Tuukkanen A; Henschel A; Winter C; Winnenburg R; Schroeder M
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D181-9. PubMed ID: 19910368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cascading classifier application for topology prediction of transmembrane beta-barrel proteins.
    Kazemian HB; Grimaldi CM
    J Bioinform Comput Biol; 2020 Dec; 18(6):2050034. PubMed ID: 33064051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PredβTM: A Novel β-Transmembrane Region Prediction Algorithm.
    Roy Choudhury A; Novič M
    PLoS One; 2015; 10(12):e0145564. PubMed ID: 26694538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier.
    Sapay N; Guermeur Y; Deléage G
    BMC Bioinformatics; 2006 May; 7():255. PubMed ID: 16704727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins.
    Garrow AG; Agnew A; Westhead DR
    BMC Bioinformatics; 2005 Mar; 6():56. PubMed ID: 15769290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.
    Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA
    Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences.
    Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of the burial status of transmembrane residues of α-helix membrane protein by incorporating the structural and physicochemical features.
    Wang C; Li S; Xi L; Liu H; Yao X
    Amino Acids; 2011 Mar; 40(3):991-1002. PubMed ID: 20740371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate prediction of helix interactions and residue contacts in membrane proteins.
    Hönigschmid P; Frishman D
    J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of the burial status of transmembrane residues of helical membrane proteins.
    Park Y; Hayat S; Helms V
    BMC Bioinformatics; 2007 Aug; 8():302. PubMed ID: 17708758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.
    Suresh V; Parthasarathy S
    Protein Pept Lett; 2014; 21(8):736-42. PubMed ID: 23855661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.