These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 22805529)
1. Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast. Dié A; Kitin P; Kouamé FN; Van den Bulcke J; Van Acker J; Beeckman H Ann Bot; 2012 Sep; 110(4):861-73. PubMed ID: 22805529 [TBL] [Abstract][Full Text] [Related]
2. Changes in cambial activity are related to precipitation patterns in four tropical hardwood species grown in Indonesia. Rahman MH; Nugroho WD; Nakaba S; Kitin P; Kudo K; Yamagishi Y; Begum S; Marsoem SN; Funada R Am J Bot; 2019 Jun; 106(6):760-771. PubMed ID: 31157413 [TBL] [Abstract][Full Text] [Related]
3. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Gričar J; Prislan P; Gryc V; Vavrčík H; de Luis M; Cufar K Tree Physiol; 2014 Aug; 34(8):869-81. PubMed ID: 24728295 [TBL] [Abstract][Full Text] [Related]
5. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. Gričar J; Zavadlav S; Jyske T; Lavrič M; Laakso T; Hafner P; Eler K; Vodnik D Tree Physiol; 2019 Feb; 39(2):222-233. PubMed ID: 30239939 [TBL] [Abstract][Full Text] [Related]
6. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Sorce C; Giovannelli A; Sebastiani L; Anfodillo T Plant Cell Rep; 2013 Jun; 32(6):885-98. PubMed ID: 23553557 [TBL] [Abstract][Full Text] [Related]
7. [Seasonal development of phloem in Siberian larch stems]. Antonova GF; Stasova VV Ontogenez; 2008; 39(4):259-72. PubMed ID: 18792638 [TBL] [Abstract][Full Text] [Related]
8. Seasonal development of cambial activity in relation to xylem formation in Chinese fir. Wu H; Xu H; Li H; Wei D; Lin J; Li X J Plant Physiol; 2016 May; 195():23-30. PubMed ID: 26986869 [TBL] [Abstract][Full Text] [Related]
9. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524 [TBL] [Abstract][Full Text] [Related]
10. Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium. Begum S; Shibagaki M; Furusawa O; Nakaba S; Yamagishi Y; Yoshimoto J; Jin HO; Sano Y; Funada R Planta; 2012 Jan; 235(1):165-79. PubMed ID: 21861112 [TBL] [Abstract][Full Text] [Related]
11. Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees. Begum S; Nakaba S; Oribe Y; Kubo T; Funada R Ann Bot; 2010 Dec; 106(6):885-95. PubMed ID: 21037242 [TBL] [Abstract][Full Text] [Related]
12. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems. Begum S; Nakaba S; Yamagishi Y; Yamane K; Islam MA; Oribe Y; Ko JH; Jin HO; Funada R Ann Bot; 2012 Sep; 110(4):875-85. PubMed ID: 22843340 [TBL] [Abstract][Full Text] [Related]
13. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes. Cocozza C; Palombo C; Tognetti R; La Porta N; Anichini M; Giovannelli A; Emiliani G Tree Physiol; 2016 Jul; 36(7):832-46. PubMed ID: 26941291 [TBL] [Abstract][Full Text] [Related]
14. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Simard S; Giovannelli A; Treydte K; Traversi ML; King GM; Frank D; Fonti P Tree Physiol; 2013 Sep; 33(9):913-23. PubMed ID: 24128848 [TBL] [Abstract][Full Text] [Related]
15. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Begum S; Nakaba S; Yamagishi Y; Oribe Y; Funada R Physiol Plant; 2013 Jan; 147(1):46-54. PubMed ID: 22680337 [TBL] [Abstract][Full Text] [Related]
16. Sector analysis reveals patterns of cambium differentiation in poplar stems. Bossinger G; Spokevicius AV J Exp Bot; 2018 Aug; 69(18):4339-4348. PubMed ID: 29931329 [TBL] [Abstract][Full Text] [Related]
17. WUSCHEL-RELATED HOMEOBOX genes are crucial for normal vascular organization and wood formation in poplar. Haghighat M; Zhong R; Ye ZH Plant Sci; 2024 Sep; 346():112138. PubMed ID: 38825043 [TBL] [Abstract][Full Text] [Related]
18. Genetic and hormonal regulation of cambial development. Ursache R; Nieminen K; Helariutta Y Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327 [TBL] [Abstract][Full Text] [Related]
19. Wood biosynthesis and typologies: a molecular rhapsody. Guerriero G; Sergeant K; Hausman JF Tree Physiol; 2014 Aug; 34(8):839-55. PubMed ID: 24876292 [TBL] [Abstract][Full Text] [Related]
20. Intra-annual cambial activity and carbon availability in stem of poplar. Deslauriers A; Giovannelli A; Rossi S; Castro G; Fragnelli G; Traversi L Tree Physiol; 2009 Oct; 29(10):1223-35. PubMed ID: 19696052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]