These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22805804)

  • 21. Potential of bioethanol production from olive mill solid wastes.
    Abu Tayeh H; Najami N; Dosoretz C; Tafesh A; Azaizeh H
    Bioresour Technol; 2014; 152():24-30. PubMed ID: 24275022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential of olive mill wastes for soil C sequestration.
    Sánchez-Monedero MA; Cayuela ML; Mondini C; Serramiá N; Roig A
    Waste Manag; 2008; 28(4):767-73. PubMed ID: 18032015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of compost of two-phase olive mill waste on olive grove: effects on soil, olive fruit and olive oil quality.
    Fernández-Hernández A; Roig A; Serramiá N; Civantos CG; Sánchez-Monedero MA
    Waste Manag; 2014 Jul; 34(7):1139-47. PubMed ID: 24810202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic Potential of Filamentous Fungi as a Biological Pretreatment for Acidogenic Fermentation of Coffee Waste.
    Pereira J; Cachinho A; de Melo MMR; Silva CM; Lemos PC; Xavier AMRB; Serafim LS
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma.
    Estévez E; Veiga MC; Kennes C
    J Ind Microbiol Biotechnol; 2005 Jan; 32(1):33-7. PubMed ID: 15702332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis.
    Martinez-Garcia G; Johnson AC; Bachmann RT; Williams CJ; Burgoyne A; Edyvean RG
    J Hazard Mater; 2009 May; 164(2-3):1398-405. PubMed ID: 18990493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short and medium-term effects of two-phase olive mill waste application on olive grove production and soil properties under semiarid mediterranean conditions.
    López-Piñeiro A; Albarrán A; Nunes JM; Barreto C
    Bioresour Technol; 2008 Nov; 99(17):7982-7. PubMed ID: 18462936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ensiling olive cake with and without molasses for ruminant feeding.
    Weinberg ZG; Chen Y; Weinberg P
    Bioresour Technol; 2008 Apr; 99(6):1526-9. PubMed ID: 17543518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: A way to valorize this industrial by-product in animal feed.
    Chebaibi S; Leriche Grandchamp M; Burgé G; Clément T; Allais F; Laziri F
    J Biosci Bioeng; 2019 Sep; 128(3):384-390. PubMed ID: 31103424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production.
    Moya Ramírez I; Altmajer Vaz D; Banat IM; Marchant R; Jurado Alameda E; García Román M
    Bioresour Technol; 2016 Apr; 205():1-6. PubMed ID: 26796482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of olive-mill pomace mixed with organic fraction of municipal solid waste.
    Ağdağ ON
    Biodegradation; 2011 Sep; 22(5):931-8. PubMed ID: 21221721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An overview on olive mill wastes and their valorisation methods.
    Roig A; Cayuela ML; Sánchez-Monedero MA
    Waste Manag; 2006; 26(9):960-9. PubMed ID: 16246541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of biological activity and reactor performance in biofiltration of toluene with the fungus Paecilomyces variotii CBS115145.
    García-Peña I; Hernández S; Auria R; Revah S
    Appl Environ Microbiol; 2005 Aug; 71(8):4280-5. PubMed ID: 16085815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics.
    Fernández-Rodríguez MJ; Rincón B; Fermoso FG; Jiménez AM; Borja R
    Bioresour Technol; 2014 Apr; 157():263-9. PubMed ID: 24561632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process.
    Gavala HN; Skiadas IV; Ahring BK; Lyberatos G
    Water Sci Technol; 2006; 53(8):271-9. PubMed ID: 16784212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1).
    Boubaker F; Ridha BC
    Bioresour Technol; 2008 Sep; 99(14):6565-77. PubMed ID: 18187320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tannase production by Paecilomyces variotii.
    Battestin V; Macedo GA
    Bioresour Technol; 2007 Jul; 98(9):1832-7. PubMed ID: 17045475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One stage olive mill waste streams valorisation via hydrothermal carbonisation.
    Volpe M; Wüst D; Merzari F; Lucian M; Andreottola G; Kruse A; Fiori L
    Waste Manag; 2018 Oct; 80():224-234. PubMed ID: 30455003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid-culture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus using portable fermentation equipment.
    Jackson MA; Payne AR; Odelson DA
    J Ind Microbiol Biotechnol; 2004 May; 31(4):149-54. PubMed ID: 15071762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical Constituent Profiling of
    Wang Y; Mei X; Liu Z; Li J; Zhang X; Wang S; Geng Z; Dai L; Zhang J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31416254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.