These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 22805916)
1. Screening of Argentine native fungal strains for biocontrol of the grasshopper Tropidacris collaris: relationship between fungal pathogenicity and chitinolytic enzyme activity. Pelizza SA; Elíades LA; Saparrat MC; Cabello MN; Scorsetti AC; Lange CE World J Microbiol Biotechnol; 2012 Apr; 28(4):1359-66. PubMed ID: 22805916 [TBL] [Abstract][Full Text] [Related]
2. First record of Fusarium verticillioides as an entomopathogenic fungus of grasshoppers. Pelizza SA; Stenglein SA; Cabello MN; Dinolfo MI; Lange CE J Insect Sci; 2011; 11():70. PubMed ID: 21867437 [TBL] [Abstract][Full Text] [Related]
3. Pathogenic and enzyme activities of the entomopathogenic fungus Tolypocladium cylindrosporum (Ascomycota: Hypocreales) from Tierra del Fuego, Argentina. Scorsetti AC; Elíades LA; Stenglein SA; Cabello MN; Pelizza SA; Saparrat MC Rev Biol Trop; 2012 Jun; 60(2):833-41. PubMed ID: 23894949 [TBL] [Abstract][Full Text] [Related]
4. Spore loads of Paranosema locustae (Microsporidia) in heavily infected grasshoppers (Orthoptera: Acridoidea) of the Argentine Pampas and Patagonia. Plischuk S; Bardi CJ; Lange CE J Invertebr Pathol; 2013 Sep; 114(1):89-91. PubMed ID: 23796497 [TBL] [Abstract][Full Text] [Related]
5. Mechanical Vectors Enhance Fungal Entomopathogen Reduction of the Grasshopper Pest Camnula pellucida (Orthoptera: Acrididae). Kistner EJ; Saums M; Belovsky GE Environ Entomol; 2015 Feb; 44(1):144-52. PubMed ID: 26308817 [TBL] [Abstract][Full Text] [Related]
6. Management of the American cockroach's oothecae: The potential of entomopathogenic fungi control. Baggio-Deibler MV; da Costa Ferreira M; Monteiro AC; de Souza-Pollo A; Franco Lemos MV J Invertebr Pathol; 2018 Mar; 153():30-34. PubMed ID: 29438683 [TBL] [Abstract][Full Text] [Related]
7. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Pelizza SA; Schalamuk S; Simón MR; Stenglein SA; Pacheco-Marino SG; Scorsetti AC Rev Argent Microbiol; 2018; 50(2):189-201. PubMed ID: 29079330 [TBL] [Abstract][Full Text] [Related]
8. Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Gomes RC; Semêdo LT; Soares RM; Alviano CS; Linhares LF; Coelho RR Lett Appl Microbiol; 2000 Feb; 30(2):146-50. PubMed ID: 10736018 [TBL] [Abstract][Full Text] [Related]
9. Measuring Chitinase and Protease Activity in Cultures of Fungal Entomopathogens. Cheong P; Glare TR; Rostás M; Haines SR Methods Mol Biol; 2016; 1477():177-89. PubMed ID: 27565500 [TBL] [Abstract][Full Text] [Related]
10. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. Gomaa EZ J Microbiol; 2012 Feb; 50(1):103-11. PubMed ID: 22367944 [TBL] [Abstract][Full Text] [Related]
11. Fate of biological control introductions: monitoring an Australian fungal pathogen of grasshoppers in North America. Bidochka MJ; Walsh SR; Ramos ME; St Leger RJ; Silver JC; Roberts DW Proc Natl Acad Sci U S A; 1996 Jan; 93(2):918-21. PubMed ID: 8570660 [TBL] [Abstract][Full Text] [Related]
12. Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Boldo JT; Junges A; do Amaral KB; Staats CC; Vainstein MH; Schrank A Curr Genet; 2009 Oct; 55(5):551-60. PubMed ID: 19649636 [TBL] [Abstract][Full Text] [Related]
13. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Limón MC; Chacón MR; Mejías R; Delgado-Jarana J; Rincón AM; Codón AC; Benítez T Appl Microbiol Biotechnol; 2004 Jun; 64(5):675-85. PubMed ID: 14740190 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of the glycoside hydrolase family 18 genes from the entomopathogenic fungus Peng Y; Wang L; Gao Y; Ye L; Xu H; Li S; Jiang J; Li G; Dang X Can J Microbiol; 2020 Apr; 66(4):274-287. PubMed ID: 31961710 [TBL] [Abstract][Full Text] [Related]
16. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae). Jandricic SE; Filotas M; Sanderson JP; Wraight SP J Invertebr Pathol; 2014 May; 118():34-46. PubMed ID: 24583227 [TBL] [Abstract][Full Text] [Related]
17. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Sharma A; Arya SK; Singh J; Kapoor B; Bhatti JS; Suttee A; Singh G Biotechnol Genet Eng Rev; 2024 Apr; 40(1):310-340. PubMed ID: 36856523 [TBL] [Abstract][Full Text] [Related]
18. [Ultrastructure of the ovarioles of Tropidacris collaris (Stoll) (Orthoptera: Romaleidae) submitted to three photoperiods]. Santos FD; Veiga AF; Santos FA; Torres JB; Teixeira AA; Wanderley-Teixeira V Neotrop Entomol; 2007; 36(3):396-401. PubMed ID: 17710323 [TBL] [Abstract][Full Text] [Related]
19. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Prasanna L; Eijsink VG; Meadow R; Gåseidnes S Appl Microbiol Biotechnol; 2013 Feb; 97(4):1601-11. PubMed ID: 22543421 [TBL] [Abstract][Full Text] [Related]
20. Chitinases in biological control. Herrera-Estrella A; Chet I EXS; 1999; 87():171-84. PubMed ID: 10906959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]