These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22805983)

  • 1. Energy harvesting from the beating heart by a mass imbalance oscillation generator.
    Zurbuchen A; Pfenniger A; Stahel A; Stoeck CT; Vandenberghe S; Koch VM; Vogel R
    Ann Biomed Eng; 2013 Jan; 41(1):131-41. PubMed ID: 22805983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Batteryless Cardiac Implantable Electronic Devices-The Swiss Way.
    Zurbuchen A; Haeberlin A; Pfenniger A; Bereuter L; Schaerer J; Jutzi F; Huber C; Fuhrer J; Vogel R
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):78-86. PubMed ID: 27662683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocardial Energy Harvesting by Electromagnetic Induction.
    Zurbuchen A; Haeberlin A; Bereuter L; Pfenniger A; Bosshard S; Kernen M; Philipp Heinisch P; Fuhrer J; Vogel R
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):424-430. PubMed ID: 29346109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Future cardiac pacemakers – technical visions].
    Haeberlin A; Zurbuchen A; Pfenniger A; Fuhrer J; Vogel R
    Ther Umsch; 2015 Aug; 72(8):529-35. PubMed ID: 26227982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
    Hansen BJ; Liu Y; Yang R; Wang ZL
    ACS Nano; 2010 Jul; 4(7):3647-52. PubMed ID: 20507155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy harvesting from the cardiovascular system, or how to get a little help from yourself.
    Pfenniger A; Jonsson M; Zurbuchen A; Koch VM; Vogel R
    Ann Biomed Eng; 2013 Nov; 41(11):2248-63. PubMed ID: 23949656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Intracardiac Flow Based Electromagnetic Energy Harvesting Mechanism for Cardiac Pacing.
    Tholl MV; Haeberlin A; Meier B; Shaheen S; Bereuter L; Becsek B; Tanner H; Niederhauser T; Zurbuchen A
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):530-538. PubMed ID: 29993502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power harvesting using PZT ceramics embedded in orthopedic implants.
    Chen H; Liu M; Jia C; Wang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):2010-4. PubMed ID: 19812004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Tunable Resonance Cantilever for Cardiac Energy Harvesting.
    Secord TW; Audi MC
    Cardiovasc Eng Technol; 2019 Jun; 10(2):380-393. PubMed ID: 30710216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.
    Lallart M; Guyomar D; Richard C; Petit L
    J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator.
    Pfenniger A; Obrist D; Stahel A; Koch VM; Vogel R
    Med Biol Eng Comput; 2013 Jul; 51(7):741-55. PubMed ID: 23430327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers.
    Franzina N; Zurbuchen A; Zumbrunnen A; Niederhauser T; Reichlin T; Burger J; Haeberlin A
    PLoS One; 2020; 15(9):e0239667. PubMed ID: 32986751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conceptual Piezoelectric-Based Energy Harvester from In Vivo Heartbeats' Cyclic Kinetic Motion for Leadless Intracardiac Pacemakers.
    Khazaee M; Riahi S; Rezania A
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.