These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22806128)

  • 21. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part I: What do the intramuscular spike amplitude-frequency histograms reflect?
    Dimitrov GV; Arabadzhiev TI; Hogrel JY; Dimitrova NA
    J Electromyogr Kinesiol; 2008 Feb; 18(1):26-34. PubMed ID: 16963279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera.
    Collet C; Belzunces L
    J Exp Biol; 2007 Feb; 210(Pt 3):454-64. PubMed ID: 17234615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concentric needle jitter on voluntary activated frontalis in 20 healthy subjects.
    Kouyoumdjian JA; Stålberg EV
    Muscle Nerve; 2013 Mar; 47(3):440-2. PubMed ID: 23381837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cross-correlation and phase-difference methods are not equivalent under noninvasive estimation of the motor unit propagation velocity.
    Arabadzhiev TI; Dimitrov GV; Dimitrova NA
    J Electromyogr Kinesiol; 2004 Jun; 14(3):295-305. PubMed ID: 15094143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biphasic morphology of voluntary and spontaneous single muscle fiber action potentials.
    Dumitru D; King JC; van der Rijt W; Stegeman DF
    Muscle Nerve; 1994 Nov; 17(11):1301-7. PubMed ID: 7935552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incremental responses of compound muscle action potentials in normal rats produced by repeated electrical stimulation.
    Kawamoto S; Tsubahara A; Nishikawa M
    Electromyogr Clin Neurophysiol; 2003 Mar; 43(2):121-8. PubMed ID: 12661137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-aided analysis of muscle fibre conduction velocity in neuromuscular diseases.
    Vogt TH; Fritz A
    Neurol Sci; 2006 Apr; 27(1):51-7. PubMed ID: 16688600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the peak-to-peak ratio of extracellular potentials in the proximity of excitable fibres.
    Rodriguez-Falces J; Malanda A; Gila L; Rodriguez I; Navallas J
    J Electromyogr Kinesiol; 2010 Oct; 20(5):868-78. PubMed ID: 19709903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mathematical analysis of SFAP convolutional models.
    Falces JR; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2005 May; 52(5):769-83. PubMed ID: 15887526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deriving muscle fiber diameter from recorded single fiber potential.
    Zalewska E
    Neurophysiol Clin; 2017 Dec; 47(5-6):413-417. PubMed ID: 29157784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of surface electrode size on computer simulated surface motor unit potentials.
    Ferdjallah M; Wertsch JJ; Harris GF
    Electromyogr Clin Neurophysiol; 1999; 39(5):259-65. PubMed ID: 10421996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compound sensory action potential in normal and pathological human nerves.
    Krarup C
    Muscle Nerve; 2004 Apr; 29(4):465-83. PubMed ID: 15052613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased jitter and blocking in normal muscles due to doubly innervated muscle fibers.
    Lateva ZC; McGill KC; Johanson ME
    Muscle Nerve; 2003 Oct; 28(4):423-31. PubMed ID: 14506713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of changes in intracellular action potential on potentials recorded by single-fiber, macro, and belly-tendon electrodes.
    Arabadzhiev TI; Dimitrov GV; Chakarov VE; Dimitrov AG; Dimitrova NA
    Muscle Nerve; 2008 Jun; 37(6):700-12. PubMed ID: 18506714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of independent component analysis to the multi-channel surface electromyographic signals for separation of motor unit action potential trains: part II-modelling interpretation.
    Nakamura H; Yoshida M; Kotani M; Akazawa K; Moritani T
    J Electromyogr Kinesiol; 2004 Aug; 14(4):433-41. PubMed ID: 15165593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of inhomogeneities in muscle tissue on single-fibre action potentials: a model study.
    Rutten WL; van Veen BK; Stroeve SH; Boom HB; Wallinga W
    Med Biol Eng Comput; 1997 Mar; 35(2):91-5. PubMed ID: 9136199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular action potential generation and extinction strongly affect the sensitivity of M-wave characteristic frequencies to changes in the peripheral parameters with muscle fatigue.
    Arabadzhiev TI; Dimitrov GV; Dimitrova NA
    J Electromyogr Kinesiol; 2005 Apr; 15(2):159-69. PubMed ID: 15664146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial distribution of active muscle fibre characteristics in the upper trapezius muscle and its dependency on contraction level and duration.
    Holtermann A; Grönlund C; Stefan Karlsson J; Roeleveld K
    J Electromyogr Kinesiol; 2008 Jun; 18(3):372-81. PubMed ID: 17276698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of components from distant fibers in a recorded single muscle fiber potential (SFP) - a new approach to the SFP criteria.
    Zalewska E; Gawel M
    Neurophysiol Clin; 2019 Feb; 49(1):69-80. PubMed ID: 30327170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.