These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 22806179)
1. Transcriptional regulators of the ΔNp63: their role in limbal epithelial cell proliferation. Hsueh YJ; Kuo PC; Chen JK J Cell Physiol; 2013 Mar; 228(3):536-46. PubMed ID: 22806179 [TBL] [Abstract][Full Text] [Related]
2. STAT3 regulates the proliferation and differentiation of rabbit limbal epithelial cells via a ΔNp63-dependent mechanism. Hsueh YJ; Chen HC; Chu WK; Cheng CC; Kuo PC; Lin LY; Ma HK; Chen JK Invest Ophthalmol Vis Sci; 2011 Jul; 52(7):4685-93. PubMed ID: 21447682 [TBL] [Abstract][Full Text] [Related]
3. Regulation of limbal keratinocyte proliferation and differentiation by TAp63 and DeltaNp63 transcription factors. Wang DY; Cheng CC; Kao MH; Hsueh YJ; Ma DH; Chen JK Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3102-8. PubMed ID: 16123408 [TBL] [Abstract][Full Text] [Related]
4. The growth-promoting effect of KGF on limbal epithelial cells is mediated by upregulation of DeltaNp63alpha through the p38 pathway. Cheng CC; Wang DY; Kao MH; Chen JK J Cell Sci; 2009 Dec; 122(Pt 24):4473-80. PubMed ID: 19920075 [TBL] [Abstract][Full Text] [Related]
6. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Chang CY; McGhee JJ; Green CR; Sherwin T Cornea; 2011 Oct; 30(10):1155-62. PubMed ID: 21849892 [TBL] [Abstract][Full Text] [Related]
7. Effects of isoproterenol and cholera toxin on human limbal epithelial cell cultures. Ghoubay-Benallaoua D; Pécha F; Goldschmidt P; Fialaire-Legendre A; Chaumeil C; Laroche L; Borderie VM Curr Eye Res; 2012 Jul; 37(7):644-53. PubMed ID: 22559728 [TBL] [Abstract][Full Text] [Related]
8. Differentially expressed genes associated with human limbal epithelial phenotypes: new molecules that potentially facilitate selection of stem cell-enriched populations. Takács L; Tóth E; Losonczy G; Szanto A; Bähr-Ivacevic T; Benes V; Berta A; Vereb G Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1252-60. PubMed ID: 21071743 [TBL] [Abstract][Full Text] [Related]
9. YAP, ΔNp63, and β-Catenin Signaling Pathways Are Involved in the Modulation of Corneal Epithelial Stem Cell Phenotype Induced by Substrate Stiffness. Gouveia RM; Vajda F; Wibowo JA; Figueiredo F; Connon CJ Cells; 2019 Apr; 8(4):. PubMed ID: 31013745 [TBL] [Abstract][Full Text] [Related]
10. N-cadherin in the maintenance of human corneal limbal epithelial progenitor cells in vitro. Higa K; Shimmura S; Miyashita H; Kato N; Ogawa Y; Kawakita T; Shimazaki J; Tsubota K Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4640-5. PubMed ID: 19420343 [TBL] [Abstract][Full Text] [Related]
11. The phenotype of limbal epithelial stem cells. Figueira EC; Di Girolamo N; Coroneo MT; Wakefield D Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):144-56. PubMed ID: 17197527 [TBL] [Abstract][Full Text] [Related]
12. The "replacement hypothesis": corneal stem cell origin epithelia are replaced by limbal stem cell origin epithelia in mouse cornea during maturation. Hayashi Y; Watanabe N; Ohashi Y Cornea; 2012 Nov; 31 Suppl 1():S68-73. PubMed ID: 23038039 [TBL] [Abstract][Full Text] [Related]
13. Characterization of corneal pannus removed from patients with total limbal stem cell deficiency. Espana EM; Di Pascuale MA; He H; Kawakita T; Raju VK; Liu CY; Tseng SC Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):2961-6. PubMed ID: 15326108 [TBL] [Abstract][Full Text] [Related]
14. A Rho-associated protein kinase: differentially distributed in limbal and corneal epithelia. SundarRaj N; Kinchington PR; Wessel H; Goldblatt B; Hassell J; Vergnes JP; Anderson SC Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1266-72. PubMed ID: 9620089 [TBL] [Abstract][Full Text] [Related]
15. Novel in vivo targets of DeltaNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach. Birkaya B; Ortt K; Sinha S BMC Mol Biol; 2007 May; 8():43. PubMed ID: 17521434 [TBL] [Abstract][Full Text] [Related]
16. Comparison of cell-suspension and explant culture of rabbit limbal epithelial cells. Zhang X; Sun H; Tang X; Ji J; Li X; Sun J; Ma Z; Yuan J; Han ZC Exp Eye Res; 2005 Feb; 80(2):227-33. PubMed ID: 15670801 [TBL] [Abstract][Full Text] [Related]
17. High expression of p63 combined with a large N/C ratio defines a subset of human limbal epithelial cells: implications on epithelial stem cells. Arpitha P; Prajna NV; Srinivasan M; Muthukkaruppan V Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3631-6. PubMed ID: 16186343 [TBL] [Abstract][Full Text] [Related]
18. Factors affecting outcome following transplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits. Ti SE; Anderson D; Touhami A; Kim C; Tseng SC Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2584-92. PubMed ID: 12147589 [TBL] [Abstract][Full Text] [Related]
19. Preservation of the limbal stem cell phenotype by appropriate culture techniques. Meyer-Blazejewska EA; Kruse FE; Bitterer K; Meyer C; Hofmann-Rummelt C; Wünsch PH; Schlötzer-Schrehardt U Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):765-74. PubMed ID: 19710417 [TBL] [Abstract][Full Text] [Related]
20. An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Koizumi N; Cooper LJ; Fullwood NJ; Nakamura T; Inoki K; Tsuzuki M; Kinoshita S Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2114-21. PubMed ID: 12091405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]