These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22806244)

  • 1. Alignment of electronic energy levels at electrochemical interfaces.
    Cheng J; Sprik M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11245-67. PubMed ID: 22806244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electric double layer at a rutile TiO₂ water interface modelled using density functional theory based molecular dynamics simulation.
    Cheng J; Sprik M
    J Phys Condens Matter; 2014 Jun; 26(24):244108. PubMed ID: 24861088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of electrocatalysis: hydrogen evolution and more.
    Santos E; Quaino P; Schmickler W
    Phys Chem Chem Phys; 2012 Aug; 14(32):11224-33. PubMed ID: 22797577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling energy level alignment at organic interfaces and density functional theory.
    Flores F; Ortega J; Vázquez H
    Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure of hybrid interfaces for polymer-based electronics.
    Fahlman M; Crispin A; Crispin X; Henze SK; de Jong MP; Osikowicz W; Tengstedt C; Salaneck WR
    J Phys Condens Matter; 2007 May; 19(18):183202. PubMed ID: 21690980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial effects on the band edges of functionalized si surfaces in liquid water.
    Pham TA; Lee D; Schwegler E; Galli G
    J Am Chem Soc; 2014 Dec; 136(49):17071-7. PubMed ID: 25402590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional.
    Cheng J; VandeVondele J
    Phys Rev Lett; 2016 Feb; 116(8):086402. PubMed ID: 26967430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of electronic and transport properties of PPy-Pt(111) and PPy-C(111):H interfaces.
    Kamiński W; Rozsíval V; Jelínek P
    J Phys Condens Matter; 2010 Feb; 22(4):045003. PubMed ID: 21386305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode.
    Skúlason E; Karlberg GS; Rossmeisl J; Bligaard T; Greeley J; Jónsson H; Nørskov JK
    Phys Chem Chem Phys; 2007 Jul; 9(25):3241-50. PubMed ID: 17579732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing capability of semiconductors to split water using ionization potentials and electron affinities only.
    Stevanović V; Lany S; Ginley DS; Tumas W; Zunger A
    Phys Chem Chem Phys; 2014 Feb; 16(8):3706-14. PubMed ID: 24419486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous tunneling in carbon/alkane/TiO(2)/gold molecular electronic junctions: energy level alignment at the metal/semiconductor interface.
    Yan H; McCreery RL
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):443-51. PubMed ID: 20353235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics.
    Cheng J; Sulpizi M; Sprik M
    J Chem Phys; 2009 Oct; 131(15):154504. PubMed ID: 20568869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure models of oxygen adsorption at the solvated, electrified Pt(111) interface.
    Yeh KY; Wasileski SA; Janik MJ
    Phys Chem Chem Phys; 2009 Nov; 11(43):10108-17. PubMed ID: 19865766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects.
    Wasileski SA; Janik MJ
    Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox potentials and acidity constants from density functional theory based molecular dynamics.
    Cheng J; Liu X; VandeVondele J; Sulpizi M; Sprik M
    Acc Chem Res; 2014 Dec; 47(12):3522-9. PubMed ID: 25365148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.
    Opalka D; Pham TA; Sprik M; Galli G
    J Phys Chem B; 2015 Jul; 119(30):9651-60. PubMed ID: 26132076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraints to the flat band potential of hematite photo-electrodes.
    Hankin A; Alexander JC; Kelsall GH
    Phys Chem Chem Phys; 2014 Aug; 16(30):16176-86. PubMed ID: 24968087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet electrons at the H2O/TiO2(110) surface.
    Onda K; Li B; Zhao J; Jordan KD; Yang J; Petek H
    Science; 2005 May; 308(5725):1154-8. PubMed ID: 15905397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.