These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22806400)

  • 1. Transgenic quail as a model for research in the avian nervous system: a comparative study of the auditory brainstem.
    Seidl AH; Sanchez JT; Schecterson L; Tabor KM; Wang Y; Kashima DT; Poynter G; Huss D; Fraser SE; Lansford R; Rubel EW
    J Comp Neurol; 2013 Jan; 521(1):5-23. PubMed ID: 22806400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons.
    Seidl AH; Rubel EW; Barría A
    J Neurosci; 2014 Apr; 34(14):4914-9. PubMed ID: 24695710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    Yamada R; Okuda H; Kuba H; Nishino E; Ishii TM; Ohmori H
    J Neurosci; 2013 Feb; 33(9):3927-38. PubMed ID: 23447603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei.
    Piñol RA; Bateman R; Mendelowitz D
    J Neurosci Methods; 2012 Sep; 210(2):238-46. PubMed ID: 22890236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis.
    Wang X; Hong H; Brown DH; Sanchez JT; Wang Y
    eNeuro; 2017; 4(2):. PubMed ID: 28413822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Japanese quail: an efficient animal model for the production of transgenic avians.
    Poynter G; Huss D; Lansford R
    Cold Spring Harb Protoc; 2009 Jan; 2009(1):pdb.emo112. PubMed ID: 20147007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1.
    Lu Y; Monsivais P; Tempel BL; Rubel EW
    J Comp Neurol; 2004 Feb; 470(1):93-106. PubMed ID: 14755528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A circuit model for saccadic suppression in the superior colliculus.
    Phongphanphanee P; Mizuno F; Lee PH; Yanagawa Y; Isa T; Hall WC
    J Neurosci; 2011 Feb; 31(6):1949-54. PubMed ID: 21307233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological characterization of synaptic connections between layer VI cortical cells and neurons of the nucleus reticularis thalami in juvenile rats.
    Gentet LJ; Ulrich D
    Eur J Neurosci; 2004 Feb; 19(3):625-33. PubMed ID: 14984412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent Quail: A Transgenic Model System for the Dynamic Study of Avian Development.
    Huss D; Lansford R
    Methods Mol Biol; 2017; 1650():125-147. PubMed ID: 28809018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons.
    Keshavarzi S; Power JM; Albers EH; Sullivan RK; Sah P
    J Neurosci; 2015 Sep; 35(38):13020-8. PubMed ID: 26400933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-calyceal excitatory inputs mediate low fidelity synaptic transmission in rat auditory brainstem slices.
    Hamann M; Billups B; Forsythe ID
    Eur J Neurosci; 2003 Nov; 18(10):2899-902. PubMed ID: 14656340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin.
    Uchida K; Momiyama T; Okano H; Yuzaki M; Koizumi A; Mine Y; Kawase T
    Neurosci Res; 2005 Jul; 52(3):276-86. PubMed ID: 15927727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem.
    Kuo SP; Bradley LA; Trussell LO
    J Neurosci; 2009 Jul; 29(30):9625-34. PubMed ID: 19641125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TrkB downregulation is required for dendrite retraction in developing neurons of chicken nucleus magnocellularis.
    Schecterson LC; Sanchez JT; Rubel EW; Bothwell M
    J Neurosci; 2012 Oct; 32(40):14000-9. PubMed ID: 23035107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal network activity in a targeted genetic model of human double cortex.
    Ackman JB; Aniksztejn L; Crépel V; Becq H; Pellegrino C; Cardoso C; Ben-Ari Y; Represa A
    J Neurosci; 2009 Jan; 29(2):313-27. PubMed ID: 19144832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Small axonless neurons": postnatally generated neocortical interneurons with delayed functional maturation.
    Le Magueresse C; Alfonso J; Khodosevich K; Arroyo Martín AA; Bark C; Monyer H
    J Neurosci; 2011 Nov; 31(46):16731-47. PubMed ID: 22090500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV.
    Sun QQ
    J Neurophysiol; 2009 Nov; 102(5):2955-73. PubMed ID: 19741102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.