These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 22806403)
1. Texture, composition and anatomy of spinach leaves in relation to nitrogen fertilization. Gutiérrez-Rodríguez E; Lieth HJ; Jernstedt JA; Labavitch JM; Suslow TV; Cantwell MI J Sci Food Agric; 2013 Jan; 93(2):227-37. PubMed ID: 22806403 [TBL] [Abstract][Full Text] [Related]
2. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.). Mogren LM; Beacham AM; Reade JP; Monaghan JM J Sci Food Agric; 2016 Jul; 96(9):2976-80. PubMed ID: 26381599 [TBL] [Abstract][Full Text] [Related]
3. High- but not low-intensity light leads to oxidative stress and quality loss of cold-stored baby leaf spinach. Glowacz M; Mogren LM; Reade JP; Cobb AH; Monaghan JM J Sci Food Agric; 2015 Jul; 95(9):1821-9. PubMed ID: 25138063 [TBL] [Abstract][Full Text] [Related]
4. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea). Lin XY; Liu XX; Zhang YP; Zhou YQ; Hu Y; Chen QH; Zhang YS; Jin CW J Sci Food Agric; 2014 Mar; 94(5):1020-5. PubMed ID: 24038064 [TBL] [Abstract][Full Text] [Related]
5. Pre-harvest nitrogen and azoxystrobin application enhances raw product quality and post-harvest shelf-life of baby spinach (Spinacia oleracea L.). Conversa G; Bonasia A; Lazzizera C; Elia A J Sci Food Agric; 2014 Dec; 94(15):3263-72. PubMed ID: 24700092 [TBL] [Abstract][Full Text] [Related]
6. Impact of nitrogen fertilizer type and application rate on growth, nitrate accumulation, and postharvest quality of spinach. Gülüt KY; Şentürk GG PeerJ; 2024; 12():e17726. PubMed ID: 39011375 [TBL] [Abstract][Full Text] [Related]
7. Ascorbic acid, carotenoids, and visual quality of baby spinach as affected by shade netting and postharvest storage. Bergquist SA; Gertsson UE; Nordmark LY; Olsson ME J Agric Food Chem; 2007 Oct; 55(21):8444-51. PubMed ID: 17880149 [TBL] [Abstract][Full Text] [Related]
8. Quality of fresh-cut baby spinach grown under a floating trays system as affected by nitrogen fertilisation and innovative packaging treatments. Rodríguez-Hidalgo S; Artés-Hernández F; Gómez PA; Fernández JA; Artés F J Sci Food Agric; 2010 Apr; 90(6):1089-97. PubMed ID: 20355151 [TBL] [Abstract][Full Text] [Related]
9. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil. Obrador A; Gonzalez D; Alvarez JM J Agric Food Chem; 2013 May; 61(20):4692-701. PubMed ID: 23638953 [TBL] [Abstract][Full Text] [Related]
10. Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants. Lester GE; Makus DJ; Hodges DM; Jifon JL J Agric Food Chem; 2013 Jul; 61(29):7019-27. PubMed ID: 23834651 [TBL] [Abstract][Full Text] [Related]
11. Short-term and long-term effects of low total pressure on gas exchange rates of spinach. Iwabuchi K; Kurata K Adv Space Res; 2003; 31(1):241-4. PubMed ID: 12580188 [TBL] [Abstract][Full Text] [Related]
12. High and low oxalate content in spinach: an investigation of accumulation patterns. Mirahmadi SF; Hassandokht M; Fatahi R; Naghavi MR; Rezaei K J Sci Food Agric; 2022 Jan; 102(2):836-843. PubMed ID: 34233027 [TBL] [Abstract][Full Text] [Related]
13. Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach. Kim BM; Lee HJ; Song YH; Kim HJ J Sci Food Agric; 2021 Jul; 101(9):3787-3794. PubMed ID: 33300600 [TBL] [Abstract][Full Text] [Related]
14. Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage. Bergquist SA; Gertsson UE; Knuthsen P; Olsson ME J Agric Food Chem; 2005 Nov; 53(24):9459-64. PubMed ID: 16302762 [TBL] [Abstract][Full Text] [Related]
15. Complementary nutrient effects of separately collected human faeces and urine on the yield and nutrient uptake of spinach (Spinacia oleracea). Kutu FR; Muchaonyerwa P; Mnkeni PN Waste Manag Res; 2011 May; 29(5):532-9. PubMed ID: 20601403 [TBL] [Abstract][Full Text] [Related]
16. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Zhu YG; Huang YZ; Hu Y; Liu YX Environ Int; 2003 Apr; 29(1):33-7. PubMed ID: 12605934 [TBL] [Abstract][Full Text] [Related]
17. Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. Timperio AM; D'Amici GM; Barta C; Loreto F; Zolla L J Exp Bot; 2007; 58(13):3695-710. PubMed ID: 17928371 [TBL] [Abstract][Full Text] [Related]
18. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants. Liu XX; Zhou K; Hu Y; Jin R; Lu LL; Jin CW; Lin XY J Sci Food Agric; 2015 Aug; 95(10):2105-16. PubMed ID: 25243598 [TBL] [Abstract][Full Text] [Related]
19. Genetic diversity and association mapping of mineral element concentrations in spinach leaves. Qin J; Shi A; Mou B; Grusak MA; Weng Y; Ravelombola W; Bhattarai G; Dong L; Yang W BMC Genomics; 2017 Dec; 18(1):941. PubMed ID: 29202697 [TBL] [Abstract][Full Text] [Related]
20. Influences of calcium deficiency and cerium on growth of spinach plants. Chao L; Bofu P; Weiqian C; Yun L; Hao H; Liang C; Xiaoqing L; Xiao W; Fashui H Biol Trace Elem Res; 2008 Mar; 121(3):266-75. PubMed ID: 17960330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]