BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22806672)

  • 1. Moving through virtual reality without moving?
    Riecke BE; Sigurdarson S; Milne AP
    Cogn Process; 2012 Aug; 13 Suppl 1():S293-7. PubMed ID: 22806672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial cognition in a virtual reality home-cage extension for freely moving rodents.
    Kaupert U; Thurley K; Frei K; Bagorda F; Schatz A; Tocker G; Rapoport S; Derdikman D; Winter Y
    J Neurophysiol; 2017 Apr; 117(4):1736-1748. PubMed ID: 28077665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial updating in virtual reality: the sufficiency of visual information.
    Riecke BE; Cunningham DW; Bülthoff HH
    Psychol Res; 2007 May; 71(3):298-313. PubMed ID: 17024431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Virtual Reality Navigational (VRN) experiment for assessment of egocentric spatial cognition.
    Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4812-5. PubMed ID: 23367004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality in neurologic rehabilitation of spatial disorientation.
    Kober SE; Wood G; Hofer D; Kreuzig W; Kiefer M; Neuper C
    J Neuroeng Rehabil; 2013 Feb; 10():17. PubMed ID: 23394289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rats are able to navigate in virtual environments.
    Hölscher C; Schnee A; Dahmen H; Setia L; Mallot HA
    J Exp Biol; 2005 Feb; 208(Pt 3):561-9. PubMed ID: 15671344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trunk-arm coordination in reaching for moving targets in people with Parkinson's disease: comparison between virtual and physical reality.
    Ma HI; Hwang WJ; Wang CY; Fang JJ; Leong IF; Wang TY
    Hum Mov Sci; 2012 Oct; 31(5):1340-52. PubMed ID: 22513232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a conceptual framework for predicting navigation performance in virtual reality.
    Grübel J; Thrash T; Hölscher C; Schinazi VR
    PLoS One; 2017; 12(9):e0184682. PubMed ID: 28915266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial orientation in virtual environment compared to real-world.
    Pastel S; Chen CH; Bürger D; Naujoks M; Martin LF; Petri K; Witte K
    J Mot Behav; 2021; 53(6):693-706. PubMed ID: 33161890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of optic flow on spatial updating: insight from an immersive virtual reality study.
    Cardelli L; Tullo MG; Galati G; Sulpizio V
    Exp Brain Res; 2023 Mar; 241(3):865-874. PubMed ID: 36781456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Impact of Head-Body Rotations on Audio-Visual Spatial Perception for Virtual Reality Applications.
    Bernal-Berdun E; Vallejo M; Sun Q; Serrano A; Gutierrez D
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2624-2632. PubMed ID: 38446650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments.
    Mueller C; Luehrs M; Baecke S; Adolf D; Luetzkendorf R; Luchtmann M; Bernarding J
    J Neurosci Methods; 2012 Aug; 209(2):290-8. PubMed ID: 22759716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Potential of Immersive Virtual Reality for Cognitive Training in Elderly.
    Bauer ACM; Andringa G
    Gerontology; 2020; 66(6):614-623. PubMed ID: 32906122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.
    Grewe P; Lahr D; Kohsik A; Dyck E; Markowitsch HJ; Bien CG; Botsch M; Piefke M
    Epilepsy Behav; 2014 Feb; 31():57-66. PubMed ID: 24361763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The shape of human navigation: how environmental geometry is used in maintenance of spatial orientation.
    Kelly JW; McNamara TP; Bodenheimer B; Carr TH; Rieser JJ
    Cognition; 2008 Nov; 109(2):281-6. PubMed ID: 18952206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality.
    Aghajan ZM; Acharya L; Moore JJ; Cushman JD; Vuong C; Mehta MR
    Nat Neurosci; 2015 Jan; 18(1):121-8. PubMed ID: 25420065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of visually evoked movement responses in moving virtual environments.
    Reed-Jones RJ; Vallis LA
    Perception; 2009; 38(5):652-63. PubMed ID: 19662941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.