These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
579 related articles for article (PubMed ID: 22806725)
1. Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis. Arun B; Gopinath B; Sharma S World J Microbiol Biotechnol; 2012 Sep; 28(9):2849-57. PubMed ID: 22806725 [TBL] [Abstract][Full Text] [Related]
2. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India. Sunar K; Dey P; Chakraborty U; Chakraborty B J Basic Microbiol; 2015 Jan; 55(1):91-104. PubMed ID: 23996212 [TBL] [Abstract][Full Text] [Related]
3. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
4. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics. Haiyambo DH; Chimwamurombe PM; Reinhold-Hurek B Curr Microbiol; 2015 Nov; 71(5):566-71. PubMed ID: 26254764 [TBL] [Abstract][Full Text] [Related]
6. Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Batista BD; Lacava PT; Ferrari A; Teixeira-Silva NS; Bonatelli ML; Tsui S; Mondin M; Kitajima EW; Pereira JO; Azevedo JL; Quecine MC Microbiol Res; 2018 Jan; 206():33-42. PubMed ID: 29146258 [TBL] [Abstract][Full Text] [Related]
7. Exploring the dynamics of ISR signaling in maize upon seed priming with plant growth promoting actinobacteria isolated from tea rhizosphere of Darjeeling. Mondal S; Acharya U; Mukherjee T; Bhattacharya D; Ghosh A; Ghosh A Arch Microbiol; 2024 May; 206(6):282. PubMed ID: 38806859 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Jog R; Pandya M; Nareshkumar G; Rajkumar S Microbiology (Reading); 2014 Apr; 160(Pt 4):778-788. PubMed ID: 24430493 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India. Dutta J; Thakur D PLoS One; 2017; 12(8):e0182302. PubMed ID: 28771547 [TBL] [Abstract][Full Text] [Related]
10. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Misra S; Dixit VK; Khan MH; Kumar Mishra S; Dviwedi G; Yadav S; Lehri A; Singh Chauhan P Microbiol Res; 2017 Dec; 205():25-34. PubMed ID: 28942841 [TBL] [Abstract][Full Text] [Related]
11. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Karthik C; Elangovan N; Kumar TS; Govindharaju S; Barathi S; Oves M; Arulselvi PI Microbiol Res; 2017 Nov; 204():65-71. PubMed ID: 28870293 [TBL] [Abstract][Full Text] [Related]
12. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Khalid A; Arshad M; Zahir ZA J Appl Microbiol; 2004; 96(3):473-80. PubMed ID: 14962127 [TBL] [Abstract][Full Text] [Related]
13. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Mukhtar S; Zareen M; Khaliq Z; Mehnaz S; Malik KA J Appl Microbiol; 2020 Feb; 128(2):556-573. PubMed ID: 31652362 [TBL] [Abstract][Full Text] [Related]
14. Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Lin L; Li Z; Hu C; Zhang X; Chang S; Yang L; Li Y; An Q Microbes Environ; 2012; 27(4):391-8. PubMed ID: 22510648 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of N Xu J; Kloepper JW; Huang P; McInroy JA; Hu CH J Basic Microbiol; 2018 May; 58(5):459-471. PubMed ID: 29473969 [TBL] [Abstract][Full Text] [Related]
16. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India. Amaresan N; Kumar K; Sureshbabu K; Madhuri K Lett Appl Microbiol; 2014 Feb; 58(2):130-7. PubMed ID: 24134431 [TBL] [Abstract][Full Text] [Related]
17. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Tchuisseu Tchakounté GV; Berger B; Patz S; Fankem H; Ruppel S Microbiol Res; 2018 Sep; 214():47-59. PubMed ID: 30031481 [TBL] [Abstract][Full Text] [Related]
18. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Haidar B; Ferdous M; Fatema B; Ferdous AS; Islam MR; Khan H Microbiol Res; 2018 Mar; 208():43-53. PubMed ID: 29551211 [TBL] [Abstract][Full Text] [Related]
19. Screening plant growth-promoting bacteria from the rhizosphere of invasive weed Xia Y; Zhang H; Zhang Y; Zhang Y; Liu J; Seviour R; Kong Y PeerJ; 2023; 11():e15064. PubMed ID: 36923499 [TBL] [Abstract][Full Text] [Related]
20. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Iyer B; Rajput MS; Rajkumar S Microbiol Res; 2017 Sep; 202():43-50. PubMed ID: 28647122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]