These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22806727)
41. Protein engineering of a cold-active beta-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity. Coker JA; Brenchley JE Extremophiles; 2006 Dec; 10(6):515-24. PubMed ID: 16736094 [TBL] [Abstract][Full Text] [Related]
42. Molecular cloning and characterization of the gene encoding cold-active beta-galactosidase from a psychrotrophic and halotolerant Planococcus sp. L4. Hu JM; Li H; Cao LX; Wu PC; Zhang CT; Sang SL; Zhang XY; Chen MJ; Lu JQ; Liu YH J Agric Food Chem; 2007 Mar; 55(6):2217-24. PubMed ID: 17326654 [TBL] [Abstract][Full Text] [Related]
43. Cloning and Characterization of a New β-Galactosidase from Li D; Li S; Wu Y; Jin M; Zhou Y; Wang Y; Chen X; Han Y Mar Drugs; 2020 Jun; 18(6):. PubMed ID: 32545859 [TBL] [Abstract][Full Text] [Related]
44. Cloning, expression and structural stability of a cold-adapted β-galactosidase from Rahnella sp. R3. Fan Y; Hua X; Zhang Y; Feng Y; Shen Q; Dong J; Zhao W; Zhang W; Jin Z; Yang R Protein Expr Purif; 2015 Nov; 115():158-64. PubMed ID: 26145832 [TBL] [Abstract][Full Text] [Related]
45. Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: a Comparative Approach. Katrolia P; Liu X; Li G; Kopparapu NK Appl Biochem Biotechnol; 2019 Jun; 188(2):410-423. PubMed ID: 30484137 [TBL] [Abstract][Full Text] [Related]
46. Cell disruption optimization and covalent immobilization of beta-D-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk. Puri M; Gupta S; Pahuja P; Kaur A; Kanwar JR; Kennedy JF Appl Biochem Biotechnol; 2010 Jan; 160(1):98-108. PubMed ID: 19198767 [TBL] [Abstract][Full Text] [Related]
47. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Rhimi M; Boisson A; Dejob M; Boudebouze S; Maguin E; Haser R; Aghajari N Res Microbiol; 2010 Sep; 161(7):515-25. PubMed ID: 20472057 [TBL] [Abstract][Full Text] [Related]
48. Enteric-coated capsule containing β-galactosidase-loaded polylactic acid nanocapsules: enzyme stability and milk lactose hydrolysis under simulated gastrointestinal conditions. He H; Zhang X; Sheng Y J Dairy Res; 2014 Nov; 81(4):479-84. PubMed ID: 25263933 [TBL] [Abstract][Full Text] [Related]
49. Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Shivaji S; Sathyanarayana Reddy G; Sundareswaran VR; Thomas C Arch Microbiol; 2015 Jun; 197(5):627-37. PubMed ID: 25702315 [TBL] [Abstract][Full Text] [Related]
50. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Liu Y; Chen Z; Jiang Z; Yan Q; Yang S Int J Biol Macromol; 2017 Nov; 104(Pt A):1055-1063. PubMed ID: 28652150 [TBL] [Abstract][Full Text] [Related]
51. Cloning and Heterologous Expression of the β-Galactosidase Gene from Park MJ; Park MS; Ji GE J Microbiol Biotechnol; 2019 Nov; 29(11):1717-1728. PubMed ID: 31581381 [TBL] [Abstract][Full Text] [Related]
52. Effect of process parameters on the β-galactosidase hydrolysis of lactose and galactooligosaccharide formation in concentrated skim milk. Singh P; Arora S; Rao PS; Kathuria D; Sharma V; Singh AK Food Chem; 2022 Nov; 393():133355. PubMed ID: 35667181 [TBL] [Abstract][Full Text] [Related]
53. Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose. Xu JL; Zhao J; Wang LF; Sun HY; Song CL; Chi ZM Appl Biochem Biotechnol; 2012 Feb; 166(3):599-611. PubMed ID: 22086565 [TBL] [Abstract][Full Text] [Related]
54. Identification, kinetics and thermodynamic analysis of novel β-galactosidase from Convolvulus arvensis seeds: An efficient agent for delactosed milk activity. Zaman U; Rehman KU; Khan SU; Refat MS; Badshah S; Hajira B; Iqbal A; Khan WU; Alsuhaibani AM Int J Biol Macromol; 2022 Nov; 220():1545-1555. PubMed ID: 36113598 [TBL] [Abstract][Full Text] [Related]
55. Bio-conversion of whey lactose using enzymatic hydrolysis with β-galactosidase: an experimental and kinetic study. Bella K; Pilli S; Venkateswara Rao P; Tyagi RD Environ Technol; 2024 Feb; 45(6):1234-1247. PubMed ID: 36282727 [TBL] [Abstract][Full Text] [Related]
56. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Vester JK; Glaring MA; Stougaard P Microb Cell Fact; 2014 May; 13():72. PubMed ID: 24886068 [TBL] [Abstract][Full Text] [Related]
57. Effects of galactose and glucose on the hydrolysis reaction of a thermostable beta-galactosidase from Caldicellulosiruptor saccharolyticus. Park AR; Oh DK Appl Microbiol Biotechnol; 2010 Feb; 85(5):1427-35. PubMed ID: 19662397 [TBL] [Abstract][Full Text] [Related]
58. Modeling lactose hydrolysis for efficiency and selectivity: Toward the preservation of sialyloligosaccharides in bovine colostrum whey permeate. de Moura Bell JMLN; Aquino LFMC; Liu Y; Cohen JL; Lee H; de Melo Silva VL; Rodrigues MI; Barile D J Dairy Sci; 2016 Aug; 99(8):6157-6163. PubMed ID: 27236766 [TBL] [Abstract][Full Text] [Related]
59. [Uses of microbial beta-galactosidases to reduce lactose content in milk and dairy products]. García-Garibay M; Gómez-Ruiz L Rev Invest Clin; 1996 Nov; 48 Suppl():51-61. PubMed ID: 9122548 [TBL] [Abstract][Full Text] [Related]
60. Stabilization of β-D-galactosidase in solution containing chitosan-based membrane: Central composite rotatable design. da Cruz LF; Polizeli AG; Enzweiler H; Paulino AT Int J Biol Macromol; 2024 Jul; 273(Pt 1):132992. PubMed ID: 38857718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]