BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22806778)

  • 1. Studies revealing bioremediation potential of the strain Burkholderia sp. GB-01 for abamectin contaminated soils.
    Ali SW; Yu FB; Li LT; Li XH; Gu LF; Jiang JD; Li SP
    World J Microbiol Biotechnol; 2012 Jan; 28(1):39-45. PubMed ID: 22806778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of an abamectin-degrading Burkholderia cepacia-like GB-01 strain.
    Ali SW; Li R; Zhou WY; Sun JQ; Guo P; Ma JP; Li SP
    Biodegradation; 2010 Jun; 21(3):441-52. PubMed ID: 19937266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental effects of the usage of avermectins in livestock.
    Halley BA; VandenHeuvel WJ; Wislocki PG
    Vet Parasitol; 1993 Jun; 48(1-4):109-25. PubMed ID: 8346626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bioremediation of fenpropathrin-contaminated soil by Sphingomonas sp.JQL4-5].
    Hong YF; Hong Q; Shen YJ; Li SP
    Huan Jing Ke Xue; 2007 May; 28(5):1121-5. PubMed ID: 17633189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100.
    Labana S; Singh OV; Basu A; Pandey G; Jain RK
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):417-24. PubMed ID: 15806356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Microbial degradation of Abamectin in soil].
    Zhang W; Yu Y; Lin K; Li S; Wu J; Fan D
    Ying Yong Sheng Tai Xue Bao; 2004 Nov; 15(11):2175-8. PubMed ID: 15707337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa.
    Arshad M; Hussain S; Saleem M
    J Appl Microbiol; 2008 Feb; 104(2):364-70. PubMed ID: 17922824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of abamectin by newly isolated Stenotrophomonas maltophilia ZJB-14120 and characterization of its abamectin-tolerance mechanism.
    Wang YS; Zheng XC; Hu QW; Zheng YG
    Res Microbiol; 2015 Jun; 166(5):408-418. PubMed ID: 25957243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abamectin in soils: Analytical methods, kinetics, sorption and dissipation.
    Dionisio AC; Rath S
    Chemosphere; 2016 May; 151():17-29. PubMed ID: 26923238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of abamectin and doramectin to soil invertebrates.
    Kolar L; Kozuh Erzen N; Hogerwerf L; van Gestel CA
    Environ Pollut; 2008 Jan; 151(1):182-9. PubMed ID: 17434247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches.
    Lima D; Viana P; André S; Chelinho S; Costa C; Ribeiro R; Sousa JP; Fialho AM; Viegas CA
    Chemosphere; 2009 Jan; 74(2):187-92. PubMed ID: 19004466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bioremediation of chlorothalonil-contaminated soil by utilizing Pseudomonas sp. strain CTN-3].
    Wang GL; Chen HH; Bi M; Li SP
    Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):807-11. PubMed ID: 22720629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil.
    Fang H; Dong B; Yan H; Tang F; Yu Y
    J Hazard Mater; 2010 Dec; 184(1-3):281-289. PubMed ID: 20828928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013.
    Somtrakoon K; Suanjit S; Pokethitiyook P; Kruatrachue M; Lee H; Upatham S
    Curr Microbiol; 2008 Aug; 57(2):102-6. PubMed ID: 18379840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of di-(2-ethylhexyl) phthalate by a newly isolated Gordonia sp. and its application in the remediation of contaminated soils.
    Wang Y; Zhan W; Ren Q; Cheng S; Wang J; Ma X; Zhang C; Wang Y
    Sci Total Environ; 2019 Nov; 689():645-651. PubMed ID: 31279210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Isolation and identification of a chlorimuron-ethyl-degrading bacterium and optimization of its degradation conditions].
    Yang F; Zhang R; Xiao Y; Liu C; Fu H
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):560-568. PubMed ID: 32237549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of thiocyanate by a novel strain of Burkholderia phytofirmans from soil contaminated by gold mine tailings.
    Vu HP; Mu A; Moreau JW
    Lett Appl Microbiol; 2013 Oct; 57(4):368-72. PubMed ID: 23809017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400.
    Ponce BL; Latorre VK; González M; Seeger M
    Enzyme Microb Technol; 2011 Dec; 49(6-7):509-16. PubMed ID: 22142725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils.
    Andreolli M; Lampis S; Zenaro E; Salkinoja-Salonen M; Vallini G
    FEMS Microbiol Lett; 2011 Jun; 319(1):11-8. PubMed ID: 21388438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic and phylogenetic characterization of an abamectin-degrading bacterial strain isolated from a citrus orchard.
    Ali SW; Yu FB; Haider MS; Yan X; Li SP
    J Gen Appl Microbiol; 2013; 59(3):215-25. PubMed ID: 23863292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.