These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22806834)

  • 1. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae.
    Eckert-Boulet N; Pedersen ML; Krogh BO; Lisby M
    Yeast; 2012 Aug; 29(8):323-34. PubMed ID: 22806834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair.
    Priebe SD; Westmoreland J; Nilsson-Tillgren T; Resnick MA
    Mol Cell Biol; 1994 Jul; 14(7):4802-14. PubMed ID: 8007979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A series of conditional shuttle vectors for targeted genomic integration in budding yeast.
    Chou CC; Patel MT; Gartenberg MR
    FEMS Yeast Res; 2015 May; 15(3):. PubMed ID: 25736914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of mutation rad57-1 on the fidelity of DNA double-strand gap repair in Saccharomyces cerevisiae.
    Glasunov AV; Glaser VM
    Curr Genet; 1999 Jan; 34(6):430-7. PubMed ID: 9933354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of non-homology between recombining DNA sequences on double-strand break repair in Saccharomyces cerevisiae.
    Glasunov A; Frankenberg-Schwager M; Frankenberg D
    Mol Gen Genet; 1995 Apr; 247(1):55-60. PubMed ID: 7715604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates.
    Bärtsch S; Kang LE; Symington LS
    Mol Cell Biol; 2000 Feb; 20(4):1194-205. PubMed ID: 10648605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmids for in vivo construction of integrative Candida albicans vectors in Saccharomyces cerevisiae.
    Vieira N; Pereira F; Casal M; Brown AJ; Paiva S; Johansson B
    Yeast; 2010 Nov; 27(11):933-9. PubMed ID: 20602447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.
    Guo X; Jinks-Robertson S
    DNA Repair (Amst); 2013 Dec; 12(12):1053-61. PubMed ID: 24120148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic control of plasmid DNA double-strand gap repair in yeast, Saccharomyces cerevisiae.
    Glaser VM; Glasunov AV; Tevzadze GG; Perera JR; Shestakov SV
    Curr Genet; 1990 Jul; 18(1):1-5. PubMed ID: 2245471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.
    Scanlon TC; Gray EC; Griswold KE
    BMC Biotechnol; 2009 Nov; 9():95. PubMed ID: 19930565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae.
    Ahne F; Jha B; Eckardt-Schupp F
    Nucleic Acids Res; 1997 Feb; 25(4):743-9. PubMed ID: 9016623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
    Mezard C; Nicolas A
    Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of long DNA sequences using a new synthetic Escherichia coli-yeast shuttle vector.
    Hou Z; Zhou Z; Wang Z; Xiao G
    Virol Sin; 2016 Apr; 31(2):160-7. PubMed ID: 27113243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences.
    Kuijpers NG; Solis-Escalante D; Bosman L; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Microb Cell Fact; 2013 May; 12():47. PubMed ID: 23663359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De Novo Assembly of Plasmids Using Yeast Recombinational Cloning.
    Mashruwala AA; Boyd JM
    Methods Mol Biol; 2016; 1373():33-41. PubMed ID: 26194707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of linear DNA in Saccharomyces cerevisiae and Candida glabrata: the role of homologous and non-homologous end joining.
    Corrigan MW; Kerwin-Iosue CL; Kuczmarski AS; Amin KB; Wykoff DD
    PLoS One; 2013; 8(7):e69628. PubMed ID: 23894512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene.
    Agaphonov M; Alexandrov A
    FEMS Yeast Res; 2014 Nov; 14(7):1048-54. PubMed ID: 25124534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae.
    Jha B; Ahne F; Eckardt-Schupp F
    Curr Genet; 1993; 23(5-6):402-7. PubMed ID: 8319296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. I-SceI-mediated plasmid deletion and intra-molecular recombination in Spiroplasma citri.
    Breton M; Duret S; Béven L; Dubrana MP; Renaudin J
    J Microbiol Methods; 2011 Feb; 84(2):216-22. PubMed ID: 21129414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.