These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 22806863)
1. Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors. Mizuno K; Morishita Y; Ando A; Tsuchiya N; Hirata M; Tanaka K World J Microbiol Biotechnol; 2012 Feb; 28(2):677-86. PubMed ID: 22806863 [TBL] [Abstract][Full Text] [Related]
2. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
3. Community structure of a sulfate-reducing consortium in lead-contaminated wastewater treatment process. Nguyen YT; Kieu HT; West S; Dang YT; Horn H World J Microbiol Biotechnol; 2017 Jan; 33(1):10. PubMed ID: 27873195 [TBL] [Abstract][Full Text] [Related]
4. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Geets J; Borremans B; Diels L; Springael D; Vangronsveld J; van der Lelie D; Vanbroekhoven K J Microbiol Methods; 2006 Aug; 66(2):194-205. PubMed ID: 16337704 [TBL] [Abstract][Full Text] [Related]
6. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
7. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China. Yang X; Huang TL; Guo L; Xia C; Zhang HH; Zhou SL Genet Mol Res; 2015 May; 14(2):5830-44. PubMed ID: 26125782 [TBL] [Abstract][Full Text] [Related]
8. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters. Huber B; Drewes JE; Lin KC; König R; Müller E Water Sci Technol; 2014; 70(8):1405-11. PubMed ID: 25353947 [TBL] [Abstract][Full Text] [Related]
9. Effect of nitrate injection on the bacterial community in a water-oil tank system analyzed by PCR-DGGE. Jurelevicius D; von der Weid I; Korenblum E; Valoni E; Penna M; Seldin L J Ind Microbiol Biotechnol; 2008 Apr; 35(4):251-5. PubMed ID: 18180965 [TBL] [Abstract][Full Text] [Related]
10. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage. Qian J; Liu R; Wei L; Lu H; Chen GH Water Res; 2015 Sep; 80():189-99. PubMed ID: 26001823 [TBL] [Abstract][Full Text] [Related]
12. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
13. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields. Priha O; Nyyssönen M; Bomberg M; Laitila A; Simell J; Kapanen A; Juvonen R Appl Environ Microbiol; 2013 Sep; 79(17):5186-96. PubMed ID: 23793633 [TBL] [Abstract][Full Text] [Related]
14. Successional development of sulfate-reducing bacterial populations and their activities in an activated sludge immobilized agar gel film. Okabe S; Santegoeds CM; Watanabe Y; de Beer D Biotechnol Bioeng; 2002 Apr; 78(2):119-30. PubMed ID: 11870602 [TBL] [Abstract][Full Text] [Related]
15. Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Steger D; Wentrup C; Braunegger C; Deevong P; Hofer M; Richter A; Baranyi C; Pester M; Wagner M; Loy A Appl Environ Microbiol; 2011 Feb; 77(4):1231-42. PubMed ID: 21169452 [TBL] [Abstract][Full Text] [Related]
16. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor. Prachakittikul P; Wantawin C; Noophan PL; Boonapatcharoen N J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(3):220-8. PubMed ID: 26634619 [TBL] [Abstract][Full Text] [Related]
17. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Wu XJ; Pan JL; Liu XL; Tan J; Li DT; Yang H Can J Microbiol; 2009 Jul; 55(7):818-28. PubMed ID: 19767854 [TBL] [Abstract][Full Text] [Related]
18. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Grigoryan AA; Cornish SL; Buziak B; Lin S; Cavallaro A; Arensdorf JJ; Voordouw G Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934 [TBL] [Abstract][Full Text] [Related]
19. Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Ben-Dov E; Brenner A; Kushmaro A Microb Ecol; 2007 Oct; 54(3):439-51. PubMed ID: 17351812 [TBL] [Abstract][Full Text] [Related]
20. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis. Wang X; Zhang Y; Zhang T; Zhou J Appl Microbiol Biotechnol; 2016 Mar; 100(6):2895-905. PubMed ID: 26603764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]