BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22807139)

  • 1. Design of flexible Lewis acidic sites in porous coordination polymers by using the viologen moiety.
    Higuchi M; Nakamura K; Horike S; Hijikata Y; Yanai N; Fukushima T; Kim J; Kato K; Takata M; Watanabe D; Oshima S; Kitagawa S
    Angew Chem Int Ed Engl; 2012 Aug; 51(33):8369-72. PubMed ID: 22807139
    [No Abstract]   [Full Text] [Related]  

  • 2. A flexible porous coordination polymer functionalized by unsaturated metal clusters.
    Zhang JP; Horike S; Kitagawa S
    Angew Chem Int Ed Engl; 2007; 46(6):889-92. PubMed ID: 17183498
    [No Abstract]   [Full Text] [Related]  

  • 3. Rational synthesis of a porous copper(II) coordination polymer bridged by weak Lewis-base inorganic monoanions using an anion-mixing method.
    Noro S; Fukuhara K; Hijikata Y; Kubo K; Nakamura T
    Inorg Chem; 2013 May; 52(10):5630-2. PubMed ID: 23659188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption.
    Maji TK; Uemura K; Chang HC; Matsuda R; Kitagawa S
    Angew Chem Int Ed Engl; 2004 Jun; 43(25):3269-72. PubMed ID: 15213951
    [No Abstract]   [Full Text] [Related]  

  • 5. Reversible topochemical transformation of a soft crystal of a coordination polymer.
    Ghosh SK; Zhang JP; Kitagawa S
    Angew Chem Int Ed Engl; 2007; 46(42):7965-8. PubMed ID: 17868167
    [No Abstract]   [Full Text] [Related]  

  • 6. A block PCP crystal: anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth.
    Furukawa S; Hirai K; Takashima Y; Nakagawa K; Kondo M; Tsuruoka T; Sakata O; Kitagawa S
    Chem Commun (Camb); 2009 Sep; (34):5097-9. PubMed ID: 20448958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A crystalline mesoporous coordination copolymer with high microporosity.
    Koh K; Wong-Foy AG; Matzger AJ
    Angew Chem Int Ed Engl; 2008; 47(4):677-80. PubMed ID: 18058972
    [No Abstract]   [Full Text] [Related]  

  • 8. Dynamic motion of building blocks in porous coordination polymers.
    Horike S; Matsuda R; Tanaka D; Matsubara S; Mizuno M; Endo K; Kitagawa S
    Angew Chem Int Ed Engl; 2006 Nov; 45(43):7226-30. PubMed ID: 17013958
    [No Abstract]   [Full Text] [Related]  

  • 9. Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws.
    Liao PQ; Zhou DD; Zhu AX; Jiang L; Lin RB; Zhang JP; Chen XM
    J Am Chem Soc; 2012 Oct; 134(42):17380-3. PubMed ID: 23039713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transition metal Lewis acid/base triad system for cooperative substrate binding.
    Tutusaus O; Ni C; Szymczak NK
    J Am Chem Soc; 2013 Mar; 135(9):3403-6. PubMed ID: 23421523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ln-Co-based rock-salt-type porous coordination polymers: vapor response controlled by changing the lanthanide ion.
    Kobayashi A; Suzuki Y; Ohba T; Noro S; Chang HC; Kato M
    Inorg Chem; 2011 Mar; 50(6):2061-3. PubMed ID: 21338106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional ruthenium(II) hydride complexes with pendant strong Lewis acid moieties: structure, dynamics, and cooperativity.
    Ostapowicz TG; Merkens C; Hölscher M; Klankermayer J; Leitner W
    J Am Chem Soc; 2013 Feb; 135(6):2104-7. PubMed ID: 23360380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional porous organic polymers for heterogeneous catalysis.
    Zhang Y; Riduan SN
    Chem Soc Rev; 2012 Mar; 41(6):2083-94. PubMed ID: 22134621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly selective CO2 adsorption accompanied with low-energy regeneration in a two-dimensional Cu(II) porous coordination polymer with inorganic fluorinated PF6(-) anions.
    Noro S; Hijikata Y; Inukai M; Fukushima T; Horike S; Higuchi M; Kitagawa S; Akutagawa T; Nakamura T
    Inorg Chem; 2013 Jan; 52(1):280-5. PubMed ID: 23249245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity.
    Schnobrich JK; Lebel O; Cychosz KA; Dailly A; Wong-Foy AG; Matzger AJ
    J Am Chem Soc; 2010 Oct; 132(39):13941-8. PubMed ID: 20839886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of gas mixtures using Co(II) carborane-based porous coordination polymers.
    Bae YS; Spokoyny AM; Farha OK; Snurr RQ; Hupp JT; Mirkin CA
    Chem Commun (Camb); 2010 May; 46(20):3478-80. PubMed ID: 20405064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coronates, spherical containers, bowl-shaped surfaces, porous 1D-, 2D-, 3D-metallo-coordination polymers, and metallodendrimers.
    Saalfrank RW; Scheurer A
    Top Curr Chem; 2012; 319():125-70. PubMed ID: 22160460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predesign and systematic synthesis of 11 highly porous coordination polymers with unprecedented topology.
    Duan J; Higuchi M; Kitagawa S
    Inorg Chem; 2015 Feb; 54(4):1645-9. PubMed ID: 25594909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks.
    Nouar F; Eubank JF; Bousquet T; Wojtas L; Zaworotko MJ; Eddaoudi M
    J Am Chem Soc; 2008 Feb; 130(6):1833-5. PubMed ID: 18205363
    [No Abstract]   [Full Text] [Related]  

  • 20. Improved photochromic properties on viologen-based inorganic-organic hybrids by using π-conjugated substituents as electron donors and stabilizers.
    Lin RG; Xu G; Wang MS; Lu G; Li PX; Guo GC
    Inorg Chem; 2013 Feb; 52(3):1199-205. PubMed ID: 23323956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.