These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22807200)

  • 1. New biocomposites based on bioplastic flax fibers and biodegradable polymers.
    Wróbel-Kwiatkowska M; Czemplik M; Kulma A; Zuk M; Kaczmar J; Dymińska L; Hanuza J; Ptak M; Szopa J
    Biotechnol Prog; 2012; 28(5):1336-46. PubMed ID: 22807200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable polyesters reinforced with surface-modified vegetable fibers.
    Zini E; Baiardo M; Armelao L; Scandola M
    Macromol Biosci; 2004 Mar; 4(3):286-95. PubMed ID: 15468219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The survival and proliferation of fibroblasts on biocomposites containing genetically modified flax fibers: an in vitro study.
    Kunert-Keil C; Gredes T; Meyer A; Wróbel-Kwiatkowska M; Dominiak M; Gedrange T
    Ann Anat; 2012 Nov; 194(6):513-7. PubMed ID: 22377281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moisture Absorption Effects on the Mechanical Properties of Sandwich Biocomposites with Cork Core and Flax/PLA Face Sheets.
    Dhakal HN; Jiang C; Sit M; Zhang Z; Khalfallah M; Grossmann E
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis of covering materials composed of biodegradable polymers enriched with flax fibers.
    Gredes T; Schönitz S; Gedrange T; Stepien L; Kozak K; Kunert-Keil C
    Biomater Res; 2017; 21():8. PubMed ID: 28529764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone).
    Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L
    Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.
    Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM
    Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical, mechanical, and spectroscopic analyses of genetically engineered flax fibers producing bioplastic (poly-beta-hydroxybutyrate).
    Wróbel-Kwiatkowska M; Skórkowska-Telichowska K; Dymińska L; Maczka M; Hanuza J; Szopa J
    Biotechnol Prog; 2009; 25(5):1489-98. PubMed ID: 19572280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite.
    Ahmed I; Cronin PS; Abou Neel EA; Parsons AJ; Knowles JC; Rudd CD
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):18-27. PubMed ID: 18800348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.
    Ju D; Han L; Li F; Chen S; Dong L
    Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application.
    Thomas MS; Pillai PKS; Faria M; Cordeiro N; Barud H; Thomas S; Pothen LA
    J Mater Sci Mater Med; 2018 Aug; 29(9):137. PubMed ID: 30120580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers.
    Xiong X; Li Q; Lu JW; Guo ZX; Sun ZH; Yu J
    J Biomater Sci Polym Ed; 2012; 23(9):1217-30. PubMed ID: 21639995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.
    Wokadala OC; Emmambux NM; Ray SS
    Carbohydr Polym; 2014 Nov; 112():216-24. PubMed ID: 25129738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel scaffold design with multi-grooved PLA fibers.
    Chung S; Gamcsik MP; King MW
    Biomed Mater; 2011 Aug; 6(4):045001. PubMed ID: 21613721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.
    Eng CC; Ibrahim NA; Zainuddin N; Ariffin H; Yunus WM
    ScientificWorldJournal; 2014; 2014():213180. PubMed ID: 25254230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering.
    Cont L; Grant D; Scotchford C; Todea M; Popa C
    J Biomater Appl; 2013 Feb; 27(6):707-16. PubMed ID: 22071352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites.
    Razak NI; Ibrahim NA; Zainuddin N; Rayung M; Saad WZ
    Molecules; 2014 Mar; 19(3):2957-68. PubMed ID: 24609017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.