These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 22807213)
1. Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): its characterisation, a rapid assay for diagnosis and its distribution in Australia. Nayak MK; Holloway JC; Emery RN; Pavic H; Bartlet J; Collins PJ Pest Manag Sci; 2013 Jan; 69(1):48-53. PubMed ID: 22807213 [TBL] [Abstract][Full Text] [Related]
3. Phosphine Resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) Collected From Grain Storage Facilities in Oklahoma, USA. Konemann CE; Hubhachen Z; Opit GP; Gautam S; Bajracharya NS J Econ Entomol; 2017 Jun; 110(3):1377-1383. PubMed ID: 28383719 [TBL] [Abstract][Full Text] [Related]
4. Genetic characterization of field-evolved resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Laemophloeidae: Coleoptera). Jagadeesan R; Collins PJ; Nayak MK; Schlipalius DI; Ebert PR Pestic Biochem Physiol; 2016 Feb; 127():67-75. PubMed ID: 26821660 [TBL] [Abstract][Full Text] [Related]
5. Phosphine resistance in Australian Cryptolestes species (Coleoptera: Laemophloeidae): perspectives from mitochondrial DNA cytochrome oxidase I analysis. Tay WT; Beckett SJ; De Barro PJ Pest Manag Sci; 2016 Jun; 72(6):1250-9. PubMed ID: 24753308 [TBL] [Abstract][Full Text] [Related]
7. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. Jagadeesan R; Nayak MK Pest Manag Sci; 2017 Jul; 73(7):1391-1401. PubMed ID: 27783467 [TBL] [Abstract][Full Text] [Related]
8. Random Mating Between Two Widely Divergent Mitochondrial Lineages of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae): A Test of Species Limits in a Phosphine-Resistant Stored Product Pest. Toon A; Daglish GJ; Ridley AW; Emery RN; Holloway JC; Walter GH J Econ Entomol; 2016 Oct; 109(5):2221-8. PubMed ID: 27515594 [TBL] [Abstract][Full Text] [Related]
9. RNA-seq Analysis Reveals Mitochondrial and Cuticular Protein Genes Are Associated with Phosphine Resistance in the Rusty Grain Beetle (Coleoptera:Laemophloeidae). Chen EH; Duan JY; Song W; Wang DX; Tang PA J Econ Entomol; 2021 Feb; 114(1):440-453. PubMed ID: 33346362 [TBL] [Abstract][Full Text] [Related]
10. Synergism Between Phosphine (PH3) and Carbon Dioxide (CO2): Implications for Managing PH3 Resistance in Rusty Grain Beetle (Laemophloeidae: Coleoptera). Constantin M; Jagadeesan R; Chandra K; Ebert P; Nayak MK J Econ Entomol; 2020 Aug; 113(4):1999-2006. PubMed ID: 32328663 [TBL] [Abstract][Full Text] [Related]
11. Influence of phosphine on hatching of Cryptolestes ferrugineus (Coleoptera: Cucujidae), Lasioderma serricorne (Coleoptera: Anobiidae) and Oryzaephilus surinamensis (Coleoptera: Silvanidae). Rajendran S; Parveen H; Begum K; Chethana R Pest Manag Sci; 2004 Nov; 60(11):1114-8. PubMed ID: 15532686 [TBL] [Abstract][Full Text] [Related]
12. A co-fumigation strategy utilizing reduced rates of phosphine (PH Jagadeesan R; Singarayan VT; Nayak MK Pest Manag Sci; 2021 Sep; 77(9):4009-4015. PubMed ID: 33890393 [TBL] [Abstract][Full Text] [Related]
14. Identification of cuticular protein genes and analysis of their roles in phosphine resistance of the rusty grain beetle Cryptolestes ferrugineus. Tang PA; Hu HY; Du WW; Jian FJ; Chen EH Pestic Biochem Physiol; 2023 Aug; 194():105491. PubMed ID: 37532352 [TBL] [Abstract][Full Text] [Related]
15. Determining changes in the distribution and abundance of a Rhyzopertha dominica phosphine resistance allele in farm grain storages using a DNA marker. Kaur R; Daniels EV; Nayak MK; Ebert PR; Schlipalius DI Pest Manag Sci; 2013 Jun; 69(6):685-8. PubMed ID: 23408750 [TBL] [Abstract][Full Text] [Related]
16. Phosphine Resistance in North American Field Populations of the Lesser Grain Borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). Afful E; Elliott B; Nayak MK; Phillips TW J Econ Entomol; 2018 Feb; 111(1):463-469. PubMed ID: 29182779 [TBL] [Abstract][Full Text] [Related]
17. Potential of Co-Fumigation with Phosphine (PH3) and Sulfuryl Fluoride (SO2F2) for the Management of Strongly Phosphine-Resistant Insect Pests of Stored Grain. Jagadeesan R; Singarayan VT; Chandra K; Ebert PR; Nayak MK J Econ Entomol; 2018 Dec; 111(6):2956-2965. PubMed ID: 30239852 [TBL] [Abstract][Full Text] [Related]
18. Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Lorini I; Collins PJ; Daglish GJ; Nayak MK; Pavic H Pest Manag Sci; 2007 Apr; 63(4):358-64. PubMed ID: 17315137 [TBL] [Abstract][Full Text] [Related]
19. A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Schlipalius DI; Tuck AG; Pavic H; Daglish GJ; Nayak MK; Ebert PR Pest Manag Sci; 2019 Apr; 75(4):1091-1098. PubMed ID: 30255667 [TBL] [Abstract][Full Text] [Related]
20. Influence of concentration, temperature and humidity on the toxicity of phosphine to the strongly phosphine-resistant psocid Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Nayak MK; Collins PJ Pest Manag Sci; 2008 Sep; 64(9):971-6. PubMed ID: 18416433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]