These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 22807319)
1. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Wesselbaum S; Hintermair U; Leitner W Angew Chem Int Ed Engl; 2012 Aug; 51(34):8585-8. PubMed ID: 22807319 [TBL] [Abstract][Full Text] [Related]
2. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. Zhang Z; Hu S; Song J; Li W; Yang G; Han B ChemSusChem; 2009; 2(3):234-8. PubMed ID: 19266516 [TBL] [Abstract][Full Text] [Related]
3. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Preti D; Resta C; Squarcialupi S; Fachinetti G Angew Chem Int Ed Engl; 2011 Dec; 50(52):12551-4. PubMed ID: 22057843 [TBL] [Abstract][Full Text] [Related]
4. A recyclable catalyst for asymmetric transfer hydrogenation with a formic acid-triethylamine mixture in ionic liquid. Kawasaki I; Tsunoda K; Tsuji T; Yamaguchi T; Shibuta H; Uchida N; Yamashita M; Ohta S Chem Commun (Camb); 2005 Apr; (16):2134-6. PubMed ID: 15846424 [TBL] [Abstract][Full Text] [Related]
5. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid. Melo CI; Szczepańska A; Bogel-Łukasik E; Nunes da Ponte M; Branco LC ChemSusChem; 2016 May; 9(10):1081-4. PubMed ID: 27114238 [TBL] [Abstract][Full Text] [Related]
6. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO Scott M; Blas Molinos B; Westhues C; Franciò G; Leitner W ChemSusChem; 2017 Mar; 10(6):1085-1093. PubMed ID: 28103428 [TBL] [Abstract][Full Text] [Related]
7. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates. Zhu F; Zhu-Ge L; Yang G; Zhou S ChemSusChem; 2015 Feb; 8(4):609-12. PubMed ID: 25603778 [TBL] [Abstract][Full Text] [Related]
8. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. Himeda Y; Miyazawa S; Hirose T ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682 [TBL] [Abstract][Full Text] [Related]
9. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant. Zhao T; Hu X; Wu D; Li R; Yang G; Wu Y ChemSusChem; 2017 May; 10(9):2046-2052. PubMed ID: 28244650 [TBL] [Abstract][Full Text] [Related]
10. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. Park K; Gunasekar GH; Prakash N; Jung KD; Yoon S ChemSusChem; 2015 Oct; 8(20):3410-3. PubMed ID: 26493515 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids. Li X; Ma X; Shi F; Deng Y ChemSusChem; 2010; 3(1):71-4. PubMed ID: 20033982 [No Abstract] [Full Text] [Related]
12. Expanding the useful range of ionic liquids: melting point depression of organic salts with carbon dioxide for biphasic catalytic reactions. Scurto AM; Leitner W Chem Commun (Camb); 2006 Sep; (35):3681-3. PubMed ID: 17047810 [TBL] [Abstract][Full Text] [Related]
13. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3. Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285 [TBL] [Abstract][Full Text] [Related]
14. CO(2) fixation through hydrogenation by chemical or enzymatic methods. Beller M; Bornscheuer UT Angew Chem Int Ed Engl; 2014 Apr; 53(18):4527-8. PubMed ID: 24706361 [TBL] [Abstract][Full Text] [Related]
15. Organic solvent nanofiltration in asymmetric hydrogenation: enhancement of enantioselectivity and catalyst stability by ionic liquids. Wong HT; See-Toh YH; Ferreira FC; Crook R; Livingston AG Chem Commun (Camb); 2006 May; (19):2063-5. PubMed ID: 16767276 [TBL] [Abstract][Full Text] [Related]
16. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes. Watkins JD; Bocarsly AB ChemSusChem; 2014 Jan; 7(1):284-90. PubMed ID: 24203913 [TBL] [Abstract][Full Text] [Related]
17. Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids/supercritical carbon dioxide systems. Lozano P; De Diego T; Larnicol M; Vaultier M; Iborra JL Biotechnol Lett; 2006 Oct; 28(19):1559-65. PubMed ID: 16900334 [TBL] [Abstract][Full Text] [Related]
18. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Fellay C; Dyson PJ; Laurenczy G Angew Chem Int Ed Engl; 2008; 47(21):3966-8. PubMed ID: 18393267 [No Abstract] [Full Text] [Related]
19. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide. Yang X Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244 [TBL] [Abstract][Full Text] [Related]
20. A prolific catalyst for dehydrogenation of neat formic acid. Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]