These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 22807329)
1. Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking. Wang J; Liu R; Qin P J Biochem Mol Toxicol; 2012 Sep; 26(9):360-7. PubMed ID: 22807329 [TBL] [Abstract][Full Text] [Related]
2. Noncovalent interaction of oxytetracycline with the enzyme trypsin. Chi Z; Liu R; Zhang H Biomacromolecules; 2010 Sep; 11(9):2454-9. PubMed ID: 20681619 [TBL] [Abstract][Full Text] [Related]
3. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods. Fang Q; Guo C; Wang Y; Liu Y J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271 [TBL] [Abstract][Full Text] [Related]
4. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling. Song W; Yu Z; Hu X; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():286-93. PubMed ID: 25228036 [TBL] [Abstract][Full Text] [Related]
5. Determination on the binding of chlortetracycline to bovine serum albumin using spectroscopic methods. Li Z; Jiao G; Sun G; Song L; Sheng F J Biochem Mol Toxicol; 2012 Sep; 26(9):331-6. PubMed ID: 22730061 [TBL] [Abstract][Full Text] [Related]
6. Investigation on potential enzyme toxicity of clenbuterol to trypsin. Chai J; Xu Q; Dai J; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():200-6. PubMed ID: 23314212 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level. Hu X; Yu Z; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():50-4. PubMed ID: 23454844 [TBL] [Abstract][Full Text] [Related]
8. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling. Lin J; Xu Y; Wang Y; Huang S; Li J; Meti MD; Xu X; Hu Z; Liu J; He Z; Xu H J Biomol Struct Dyn; 2019 Sep; 37(15):4070-4079. PubMed ID: 30449253 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic analysis on the interaction of ferulic acid and tetramethylpyrazine with trypsin. Shuai L; Chen Z; Fei P; Wang Q; Yang T Luminescence; 2014 Feb; 29(1):79-86. PubMed ID: 23606547 [TBL] [Abstract][Full Text] [Related]
10. Interaction of sodium benzoate with trypsin by spectroscopic techniques. Mu Y; Lin J; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):130-5. PubMed ID: 21890401 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanism of interaction between norfloxacin and trypsin studied by molecular spectroscopy and modeling. Lu Y; Wang G; Lu X; Lv J; Xu M; Zhang W Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jan; 75(1):261-6. PubMed ID: 19910245 [TBL] [Abstract][Full Text] [Related]
12. A probe to study the toxic interaction of tartrazine with bovine hemoglobin at the molecular level. Li Y; Wei H; Liu R Luminescence; 2014 Mar; 29(2):195-200. PubMed ID: 23653408 [TBL] [Abstract][Full Text] [Related]
13. Trypsin inhibition by Ligupurpuroside B as studied using spectroscopic, CD, and molecular docking techniques. Meti MD; Lin J; Wang Y; Wu Z; Xu H; Xu X; Han Q; Ying M; Hu Z; He Z J Biomol Struct Dyn; 2019 Aug; 37(13):3379-3387. PubMed ID: 30213239 [TBL] [Abstract][Full Text] [Related]
14. Potential toxicity of phthalic acid esters plasticizer: interaction of dimethyl phthalate with trypsin in vitro. Wang Y; Zhang G; Wang L J Agric Food Chem; 2015 Jan; 63(1):75-84. PubMed ID: 25496445 [TBL] [Abstract][Full Text] [Related]
15. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin. Momeni L; Shareghi B; Saboury AA; Farhadian S; Reisi F Int J Biol Macromol; 2017 Jan; 94(Pt A):145-153. PubMed ID: 27720961 [TBL] [Abstract][Full Text] [Related]
16. Comparative Studies on the Interaction of Spermidine with Bovine Trypsin by Multispectroscopic and Docking Methods. Momeni L; Shareghi B; Saboury AA; Farhadian S J Phys Chem B; 2016 Sep; 120(36):9632-41. PubMed ID: 27541356 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic investigation of the effect of salt on binding of tartrazine with two homologous serum albumins: quantification by use of the Debye-Hückel limiting law and observation of enthalpy-entropy compensation. Bolel P; Datta S; Mahapatra N; Halder M J Phys Chem B; 2012 Aug; 116(34):10195-204. PubMed ID: 22834570 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study. Moradi M; Divsalar A; Saboury AA; Ghalandari B; Harifi AR J Biomol Struct Dyn; 2015; 33(10):2255-66. PubMed ID: 25586906 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the interactions between Fulvic acid and Trypsin with Spectroscopic and Molecular Docking technology. Sun J; Wang X; Nie Z; Ma L; Sai H; Cheng J; Liu Y; Duan J Chem Biodivers; 2024 Feb; 21(2):e202301366. PubMed ID: 38073179 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory effects of daidzein and genistein on trypsin: Insights from spectroscopic and molecular docking studies. Zeng HJ; Wang YP; Yang R; You J; Qu LB Int J Biol Macromol; 2016 Aug; 89():336-43. PubMed ID: 27109756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]