These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates. Catt KJ; Balla T; Baukal AJ; Hausdorff WP; Aguilera G Clin Exp Pharmacol Physiol; 1988 Jul; 15(7):501-15. PubMed ID: 3152162 [TBL] [Abstract][Full Text] [Related]
11. Prostaglandin F2 alpha stimulates inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate formation in bovine luteal cells. Duncan RA; Davis JS Endocrinology; 1991 Mar; 128(3):1519-26. PubMed ID: 1847860 [TBL] [Abstract][Full Text] [Related]
12. Enantiomers of myo-inositol-1,3,4-trisphosphate and myo-inositol-1,4,6 -trisphosphate: stereospecific recognition by cerebellar and platelet myo-inositol-1,4,5-trisphosphate receptors. Murphy CT; Bullock AJ; Lindley CJ; Mills SJ; Riley AM; Potter BV; Westwick J Mol Pharmacol; 1996 Nov; 50(5):1223-30. PubMed ID: 8913354 [TBL] [Abstract][Full Text] [Related]
13. Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells. Balla T; Guillemette G; Baukal AJ; Catt KJ Biochem Biophys Res Commun; 1987 Oct; 148(1):199-205. PubMed ID: 3675574 [TBL] [Abstract][Full Text] [Related]
14. Cation sensitivity of inositol 1,4,5-trisphosphate production and metabolism in agonist-stimulated adrenal glomerulosa cells. Balla T; Nakanishi S; Catt KJ J Biol Chem; 1994 Jun; 269(23):16101-7. PubMed ID: 7515876 [TBL] [Abstract][Full Text] [Related]
15. Angiotensin-induced formation and metabolism of inositol polyphosphates in bovine adrenal glomerulosa cells. Guillemette G; Baukal AJ; Balla T; Catt KJ Biochem Biophys Res Commun; 1987 Jan; 142(1):15-22. PubMed ID: 3028399 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of inositol 1,4,5-trisphosphate in permeabilized rat aortic smooth-muscle cells. Dependence on calcium concentration. Rossier MF; Capponi AM; Vallotton MB Biochem J; 1987 Jul; 245(1):305-7. PubMed ID: 3499141 [TBL] [Abstract][Full Text] [Related]
17. Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II. Balla T; Hausdorff WP; Baukal AJ; Catt KJ Arch Biochem Biophys; 1989 Apr; 270(1):398-403. PubMed ID: 2930197 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of D-myo-inositol 1,3,4,5-tetrakisphosphate by rat liver, including the synthesis of a novel isomer of myo-inositol tetrakisphosphate. Shears SB; Parry JB; Tang EK; Irvine RF; Michell RH; Kirk CJ Biochem J; 1987 Aug; 246(1):139-47. PubMed ID: 2823793 [TBL] [Abstract][Full Text] [Related]
19. Product-precursor relationships amongst inositol polyphosphates. Incorporation of [32P]Pi into myo-inositol 1,3,4,6-tetrakisphosphate, myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 3,4,5,6-tetrakisphosphate and myo-inositol 1,3,4,5,6-pentakisphosphate in intact avian erythrocytes. Stephens LR; Downes CP Biochem J; 1990 Jan; 265(2):435-52. PubMed ID: 2405842 [TBL] [Abstract][Full Text] [Related]
20. Different patterns of agonist-stimulated increases of 3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: comparison of the effects of histamine and angiotensin II. Stauderman KA; Pruss RM J Neurochem; 1990 Mar; 54(3):946-53. PubMed ID: 2303821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]