These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22808015)

  • 21. Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.
    Bäumchen C; Krings E; Bringer S; Eggeling L; Sahm H
    FEMS Microbiol Lett; 2009 Jan; 290(2):227-35. PubMed ID: 19054080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum.
    Brinkrolf K; Brune I; Tauch A
    Genet Mol Res; 2006 Dec; 5(4):773-89. PubMed ID: 17183485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
    Vogl C; Grill S; Schilling O; Stülke J; Mack M; Stolz J
    J Bacteriol; 2007 Oct; 189(20):7367-75. PubMed ID: 17693491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Corynebacterium glutamicum l-Glutamate Exporter.
    Wang Y; Cao G; Xu D; Fan L; Wu X; Ni X; Zhao S; Zheng P; Sun J; Ma Y
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and molecular mechanism of AroP as an aromatic amino acid and histidine transporter in Corynebacterium glutamicum.
    Shang X; Zhang Y; Zhang G; Chai X; Deng A; Liang Y; Wen T
    J Bacteriol; 2013 Dec; 195(23):5334-42. PubMed ID: 24056108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase.
    Qi SW; Chaudhry MT; Zhang Y; Meng B; Huang Y; Zhao KX; Poetsch A; Jiang CY; Liu S; Liu SJ
    Proteomics; 2007 Oct; 7(20):3775-87. PubMed ID: 17880007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The salicylate 1,2-dioxygenase as a model for a conventional gentisate 1,2-dioxygenase: crystal structures of the G106A mutant and its adducts with gentisate and salicylate.
    Ferraroni M; Matera I; Bürger S; Reichert S; Steimer L; Scozzafava A; Stolz A; Briganti F
    FEBS J; 2013 Apr; 280(7):1643-52. PubMed ID: 23384287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida.
    Nichols NN; Harwood CS
    J Bacteriol; 1997 Aug; 179(16):5056-61. PubMed ID: 9260946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum.
    Ding W; Si M; Zhang W; Zhang Y; Chen C; Zhang L; Lu Z; Chen S; Shen X
    Sci Rep; 2015 Jan; 5():8044. PubMed ID: 25622822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae.
    Yamaryo-Botte Y; Rainczuk AK; Lea-Smith DJ; Brammananth R; van der Peet PL; Meikle P; Ralton JE; Rupasinghe TW; Williams SJ; Coppel RL; Crellin PK; McConville MJ
    ACS Chem Biol; 2015 Mar; 10(3):734-46. PubMed ID: 25427102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Cgl1281-encoding putative transporter of the cation diffusion facilitator family is responsible for alkali-tolerance in Corynebacterium glutamicum.
    Takeno S; Nakamura M; Fukai R; Ohnishi J; Ikeda M
    Arch Microbiol; 2008 Nov; 190(5):531-8. PubMed ID: 18592219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400.
    Romero-Silva MJ; Méndez V; Agulló L; Seeger M
    PLoS One; 2013; 8(2):e56038. PubMed ID: 23418504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum.
    Teramoto H; Shirai T; Inui M; Yukawa H
    Appl Environ Microbiol; 2008 Sep; 74(17):5290-6. PubMed ID: 18586971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1.
    Montersino S; van Berkel WJ
    Biochim Biophys Acta; 2012 Mar; 1824(3):433-42. PubMed ID: 22207056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production.
    Reddy GK; Wendisch VF
    BMC Microbiol; 2014 Mar; 14():54. PubMed ID: 24593686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory properties and interaction of the C- and N-terminal domains of BetP, an osmoregulated betaine transporter from Corynebacterium glutamicum.
    Ott V; Koch J; Späte K; Morbach S; Krämer R
    Biochemistry; 2008 Nov; 47(46):12208-18. PubMed ID: 18950194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity.
    Ozcan N; Krämer R; Morbach S
    J Bacteriol; 2005 Jul; 187(14):4752-9. PubMed ID: 15995189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae.
    Kim JS; Holmes RK
    PLoS One; 2012; 7(3):e31709. PubMed ID: 22438866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of the Gentisate 1,2-Dioxygenases DsmD and GtdA in the Catabolism of the Herbicide Dicamba in
    Li N; Peng Q; Yao L; He Q; Qiu J; Cao H; He J; Niu Q; Lu Y; Hui F
    J Agric Food Chem; 2020 Sep; 68(35):9287-9298. PubMed ID: 32786824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.