BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 22808237)

  • 1. Molecular dynamics of a thermostable multicopper oxidase from Thermus thermophilus HB27: structural differences between the apo and holo forms.
    Bello M; Valderrama B; Serrano-Posada H; Rudiño-Piñera E
    PLoS One; 2012; 7(7):e40700. PubMed ID: 22808237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostable multicopper oxidase from Thermus thermophilus HB27: crystallization and preliminary X-ray diffraction analysis of apo and holo forms.
    Serrano-Posada H; Valderrama B; Stojanoff V; Rudiño-Piñera E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Dec; 67(Pt 12):1595-8. PubMed ID: 22139175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways.
    Bello M; Correa-Basurto J; Rudiño-Piñera E
    J Biomol Struct Dyn; 2014; 32(8):1303-17. PubMed ID: 23859715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states.
    Serrano-Posada H; Centeno-Leija S; Rojas-Trejo SP; Rodríguez-Almazán C; Stojanoff V; Rudiño-Piñera E
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2396-411. PubMed ID: 26627648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The β-hairpin from the Thermus thermophilus HB27 laccase works as a pH-dependent switch to regulate laccase activity.
    Miranda-Blancas R; Avelar M; Rodriguez-Arteaga A; Sinicropi A; Rudiño-Piñera E
    J Struct Biol; 2021 Jun; 213(2):107740. PubMed ID: 33962016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large conformational changes in the Escherichia coli tryptophan synthase beta(2) subunit upon pyridoxal 5'-phosphate binding.
    Nishio K; Ogasahara K; Morimoto Y; Tsukihara T; Lee SJ; Yutani K
    FEBS J; 2010 May; 277(9):2157-70. PubMed ID: 20370823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-induced conformational changes and a reaction intermediate in branched-chain 2-oxo acid dehydrogenase (E1) from Thermus thermophilus HB8, as revealed by X-ray crystallography.
    Nakai T; Nakagawa N; Maoka N; Masui R; Kuramitsu S; Kamiya N
    J Mol Biol; 2004 Apr; 337(4):1011-33. PubMed ID: 15033367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the substrate cavity dynamics of quercetinase.
    van den Bosch M; Swart M; van Gunsteren WF; Canters GW
    J Mol Biol; 2004 Nov; 344(3):725-38. PubMed ID: 15533441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.
    Igari S; Ohtaki A; Yamanaka Y; Sato Y; Yohda M; Odaka M; Noguchi K; Yamada K
    PLoS One; 2011; 6(8):e23716. PubMed ID: 21858212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of mannosyl-3-phosphoglycerate phosphatase from Thermus thermophilus HB27: a new member of the haloalcanoic acid dehalogenase superfamily.
    Gonçalves S; Esteves AM; Santos H; Borges N; Matias PM
    Biochemistry; 2011 Nov; 50(44):9551-67. PubMed ID: 21961705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes.
    McGovern SL; Shoichet BK
    J Med Chem; 2003 Jul; 46(14):2895-907. PubMed ID: 12825931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus.
    Hritz J; Zoldák G; Sedlák E
    Proteins; 2006 Aug; 64(2):465-76. PubMed ID: 16642502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a closed-form uroporphyrinogen-III C-methyltransferase from Thermus thermophilus.
    Rehse PH; Kitao T; Tahirov TH
    Acta Crystallogr D Biol Crystallogr; 2005 Jul; 61(Pt 7):913-9. PubMed ID: 15983414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Sakuraba H; Koga K; Yoneda K; Kashima Y; Ohshima T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jul; 67(Pt 7):753-7. PubMed ID: 21795787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostability of proteins: role of metal binding and pH on the stability of the dinuclear CuA site of Thermus thermophilus.
    Sujak A; Sanghamitra NJ; Maneg O; Ludwig B; Mazumdar S
    Biophys J; 2007 Oct; 93(8):2845-51. PubMed ID: 17604317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical properties and temperature dependence of a recombinant laccase from Thermus thermophilus.
    Liu X; Gillespie M; Ozel AD; Dikici E; Daunert S; Bachas LG
    Anal Bioanal Chem; 2011 Jan; 399(1):361-6. PubMed ID: 21076916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase.
    Yaremchuk A; Tukalo M; Grøtli M; Cusack S
    J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone.
    Wilce MC; Dooley DM; Freeman HC; Guss JM; Matsunami H; McIntire WS; Ruggiero CE; Tanizawa K; Yamaguchi H
    Biochemistry; 1997 Dec; 36(51):16116-33. PubMed ID: 9405045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of the apo and holo form of rat catechol-O-methyltransferase.
    Tsuji E; Okazaki K; Isaji M; Takeda K
    J Struct Biol; 2009 Mar; 165(3):133-9. PubMed ID: 19111934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft.
    Shabalin IG; Filippova EV; Polyakov KM; Sadykhov EG; Safonova TN; Tikhonova TV; Tishkov VI; Popov VO
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1315-25. PubMed ID: 19966418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.