These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22808474)

  • 1. Changes in inducible NO synthase in the pial arteries of different diameters in hypertensive rats.
    Chertok VM; Kotsyuba AE
    Bull Exp Biol Med; 2011 Dec; 152(2):258-61. PubMed ID: 22808474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogenic vasoconstriction of pial arterial vessels of various branching orders in normotensive and spontaneously hypertensive rats.
    Ryzhikova OP; Shuvaeva VN; Dvoretskii DP
    Bull Exp Biol Med; 2006 Jan; 141(1):9-11. PubMed ID: 16929951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure distribution in the pial arterial system of rats based on morphometric data and mathematical models.
    Hudetz AG; Conger KA; Halsey JH; Pal M; Dohan O; Kovach AG
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):342-55. PubMed ID: 3584267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracerebral blood vessels: a possible role for nitric oxide in the regulation of cerebral blood flow.
    Estrada C; Mengual E; González C
    J Cereb Blood Flow Metab; 1993 Nov; 13(6):978-84. PubMed ID: 8408322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased CGRP level with increased sensitivity to CGRP in the pial arteries of spontaneously hypertensive rats.
    Hong KW; Yu SS; Shin YW; Kim CD; Rhim BY; Lee WS
    Life Sci; 1997; 60(10):697-705. PubMed ID: 9064474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral vascular bed in hypertension and consequences for the brain.
    Johansson BB
    Hypertension; 1984; 6(6 Pt 2):III81-6. PubMed ID: 6519759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on in Vivo Pial Vessels Alterations and Activity of Isolated Vascular Smooth Muscles in Abdominal Hypertension Rats.
    Turiyski VI; Vassilev PG; Ardasheva RG; Dobrev HP; Kristev AD
    Folia Med (Plovdiv); 2019 Mar; 61(1):120-126. PubMed ID: 31237846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide in responses of pial arterial vessels to low-intensity red laser irradiation.
    Gorshkova OP; Shuvaeva VN; Dvoretsky DP
    Bull Exp Biol Med; 2013 Sep; 155(5):598-600. PubMed ID: 24288717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased expression of endothelial and neuronal nitric oxide synthase in dura and pia mater after air stress.
    Zinck T; Illum R; Jansen-Olesen I
    Cephalalgia; 2006 Jan; 26(1):14-25. PubMed ID: 16396662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of inducible nitric oxide synthase and dimethyl arginine dimethylaminohydrolase in Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension.
    Leo MD; Kandasamy K; Subramani J; Tandan SK; Kumar D
    Cardiovasc Pathol; 2015; 24(1):49-55. PubMed ID: 25294342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postischemic Responsiveness of Pial Vessels to Hypercapnia.
    Gorshkova OP; Lentsman MV; Artem'eva AI; Dvoretskii DP
    Bull Exp Biol Med; 2015 May; 159(1):4-7. PubMed ID: 26033577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pial arterial and venous reaction to intravenous infusion of nimodipine in cats.
    Auer LM
    J Neurosurg Sci; 1982; 26(3):213-8. PubMed ID: 7182442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide reactivity of cerebral cortical and pial arteries in spontaneously hypertensive and normotensive rats--a morphometric study.
    Yoshida F; Fujishima M; Sadoshima S; Ishituka T; Ogata J
    Brain Res; 1987 May; 412(1):1-5. PubMed ID: 3111637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase.
    Mayhan WG
    Brain Res; 1998 May; 792(2):353-7. PubMed ID: 9593993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen biosynthesis in blood vessels of brain and other tissues of the hypertensive rat.
    Ooshima A; Fuller G; Cardinale G; Spector S; Udenfriend S
    Science; 1975 Nov; 190(4217):898-900. PubMed ID: 171771
    [No Abstract]   [Full Text] [Related]  

  • 16. A morphometric study of the effect of bilateral cervical sympathetic ganglionectomy on the architecture of pial arteries in spontaneously hypertensive and normotensive rats.
    Kåhrström J; Nordborg C; Hardebo JE; Owman C
    Acta Physiol Scand; 1994 Dec; 152(4):407-18. PubMed ID: 7701941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-derived nitric oxide synthase inhibition. Effects on cerebral blood flow, pial artery diameter, and vascular morphology in rats.
    Prado R; Watson BD; Kuluz J; Dietrich WD
    Stroke; 1992 Aug; 23(8):1118-23; discussion 1124. PubMed ID: 1378981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in adrenoreception in the microcirculatory bed of the pia mater in normotensive and spontaneously hypertensive rats.
    Ryzhikova OP; Shuvayeva VN; Kostylev AV; Dvoretskii DP
    Bull Exp Biol Med; 2007 Feb; 143(2):184-6. PubMed ID: 17970196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition.
    Yamakawa H; Jezova M; Ando H; Saavedra JM
    J Cereb Blood Flow Metab; 2003 Mar; 23(3):371-80. PubMed ID: 12621312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.