These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22809311)
1. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Afriat-Jurnou L; Jackson CJ; Tawfik DS Biochemistry; 2012 Aug; 51(31):6047-55. PubMed ID: 22809311 [TBL] [Abstract][Full Text] [Related]
2. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Afriat L; Roodveldt C; Manco G; Tawfik DS Biochemistry; 2006 Nov; 45(46):13677-86. PubMed ID: 17105187 [TBL] [Abstract][Full Text] [Related]
3. Lactonases with organophosphatase activity: structural and evolutionary perspectives. Draganov DI Chem Biol Interact; 2010 Sep; 187(1-3):370-2. PubMed ID: 20122908 [TBL] [Abstract][Full Text] [Related]
4. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
5. Hyperthermophilic phosphotriesterases/lactonases for the environment and human health. Mandrich L; Merone L; Manco G Environ Technol; 2010 Sep; 31(10):1115-27. PubMed ID: 20718294 [TBL] [Abstract][Full Text] [Related]
6. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Roodveldt C; Tawfik DS Biochemistry; 2005 Sep; 44(38):12728-36. PubMed ID: 16171387 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
8. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro. Goldsmith M; Eckstein S; Ashani Y; Greisen P; Leader H; Sussman JL; Aggarwal N; Ovchinnikov S; Tawfik DS; Baker D; Thiermann H; Worek F Arch Toxicol; 2016 Nov; 90(11):2711-2724. PubMed ID: 26612364 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of the phosphotriesterase from M. tuberculosis, another member of phosphotriesterase-like lactonase family. Zhang L; Wang H; Liu X; Zhou W; Rao Z Biochem Biophys Res Commun; 2019 Mar; 510(2):224-229. PubMed ID: 30704759 [TBL] [Abstract][Full Text] [Related]
10. The effect of conformational variability of phosphotriesterase upon N-acyl-L-homoserine lactone and paraoxon binding: insights from molecular dynamics studies. Zhan D; Zhou Z; Guan S; Han W Molecules; 2013 Dec; 18(12):15501-18. PubMed ID: 24352010 [TBL] [Abstract][Full Text] [Related]
11. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. Meier MM; Rajendran C; Malisi C; Fox NG; Xu C; Schlee S; Barondeau DP; Höcker B; Sterner R; Raushel FM J Am Chem Soc; 2013 Aug; 135(31):11670-7. PubMed ID: 23837603 [TBL] [Abstract][Full Text] [Related]
12. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Chow JY; Wu L; Yew WS Biochemistry; 2009 May; 48(20):4344-53. PubMed ID: 19374350 [TBL] [Abstract][Full Text] [Related]
13. Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Xiang DF; Kolb P; Fedorov AA; Meier MM; Fedorov LV; Nguyen TT; Sterner R; Almo SC; Shoichet BK; Raushel FM Biochemistry; 2009 Mar; 48(10):2237-47. PubMed ID: 19159332 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358 [TBL] [Abstract][Full Text] [Related]
15. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Porzio E; Merone L; Mandrich L; Rossi M; Manco G Biochimie; 2007 May; 89(5):625-36. PubMed ID: 17337320 [TBL] [Abstract][Full Text] [Related]
16. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Ghanem E; Raushel FM Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):459-70. PubMed ID: 15982683 [TBL] [Abstract][Full Text] [Related]
17. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426. Zhang Y; An J; Yang GY; Bai A; Zheng B; Lou Z; Wu G; Ye W; Chen HF; Feng Y; Manco G PLoS One; 2015; 10(2):e0115130. PubMed ID: 25706379 [TBL] [Abstract][Full Text] [Related]
18. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Luo XJ; Kong XD; Zhao J; Chen Q; Zhou J; Xu JH Biotechnol Bioeng; 2014 Oct; 111(10):1920-30. PubMed ID: 24771278 [TBL] [Abstract][Full Text] [Related]
19. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. Hawwa R; Larsen SD; Ratia K; Mesecar AD J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223 [TBL] [Abstract][Full Text] [Related]
20. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Hill CM; Li WS; Thoden JB; Holden HM; Raushel FM J Am Chem Soc; 2003 Jul; 125(30):8990-1. PubMed ID: 15369336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]