These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22809415)

  • 21. A faster algorithm for simultaneous alignment and folding of RNA.
    Ziv-Ukelson M; Gat-Viks I; Wexler Y; Shamir R
    J Comput Biol; 2010 Aug; 17(8):1051-65. PubMed ID: 20649420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance evaluation of Warshall algorithm and dynamic programming for Markov chain in local sequence alignment.
    Khan MI; Kamal MS
    Interdiscip Sci; 2015 Mar; 7(1):78-81. PubMed ID: 25118652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple sequence alignment by parallel simulated annealing.
    Ishikawa M; Toya T; Hoshida M; Nitta K; Ogiwara A; Kanehisa M
    Comput Appl Biosci; 1993 Jun; 9(3):267-73. PubMed ID: 8324627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Location of repetitive regions in sequences by optimizing a compression method.
    Delgrange O; Dauchet M; Rivals E
    Pac Symp Biocomput; 1999; ():254-65. PubMed ID: 10380202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational complexity of algorithms for sequence comparison, short-read assembly and genome alignment.
    Baichoo S; Ouzounis CA
    Biosystems; 2017; 156-157():72-85. PubMed ID: 28392341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short Read Alignment Using SOAP2.
    Hurgobin B
    Methods Mol Biol; 2016; 1374():241-52. PubMed ID: 26519410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast mapping of short sequences with mismatches, insertions and deletions using index structures.
    Hoffmann S; Otto C; Kurtz S; Sharma CM; Khaitovich P; Vogel J; Stadler PF; Hackermüller J
    PLoS Comput Biol; 2009 Sep; 5(9):e1000502. PubMed ID: 19750212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indel seeds for homology search.
    Mak D; Gelfand Y; Benson G
    Bioinformatics; 2006 Jul; 22(14):e341-9. PubMed ID: 16873491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.
    Shi H; Schmidt B; Liu W; Müller-Wittig W
    J Comput Biol; 2010 Apr; 17(4):603-15. PubMed ID: 20426693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple Sequence Alignment Based on a Suffix Tree and Center-Star Strategy: A Linear Method for Multiple Nucleotide Sequence Alignment on Spark Parallel Framework.
    Su W; Liao X; Lu Y; Zou Q; Peng S
    J Comput Biol; 2017 Dec; 24(12):1230-1242. PubMed ID: 29116822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pairwise alignment algorithm which favors clusters of blocks.
    Nédélec E; Moncion T; Gassiat E; Bossard B; Duchateau-Nguyen G; Denise A; Termier M
    J Comput Biol; 2005; 12(1):33-47. PubMed ID: 15725732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconfigurable systems for sequence alignment and for general dynamic programming.
    Jacobi RP; Ayala-Rincón M; Carvalho LG; Llanos CH; Hartenstein RW
    Genet Mol Res; 2005 Sep; 4(3):543-52. PubMed ID: 16342039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing a bioengine for detection and analysis of base string on an affected sequence in high-concentration regions.
    Bhattacharyya D; Mandal BK; Kim TH
    Biomed Res Int; 2013; 2013():372646. PubMed ID: 24000321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations.
    Ho T; Oh SR; Kim H
    PLoS One; 2017; 12(10):e0186251. PubMed ID: 29016700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Multiple Fickett Bands to Accelerate Biological Sequence Comparisons.
    Silva GHG; Sandes EFO; Teodoro G; Melo ACMA
    J Comput Biol; 2019 Sep; 26(9):908-922. PubMed ID: 30951368
    [No Abstract]   [Full Text] [Related]  

  • 37. Using iterative methods for global multiple sequence alignment.
    Mount DW
    Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top44. PubMed ID: 20147225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sigma: multiple alignment of weakly-conserved non-coding DNA sequence.
    Siddharthan R
    BMC Bioinformatics; 2006 Mar; 7():143. PubMed ID: 16542424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate anchoring alignment of divergent sequences.
    Huang W; Umbach DM; Li L
    Bioinformatics; 2006 Jan; 22(1):29-34. PubMed ID: 16301203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Faster algorithms for optimal multiple sequence alignment based on pairwise comparisons.
    Bilu Y; Agarwal PK; Kolodny R
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):408-22. PubMed ID: 17085849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.