These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22809415)

  • 41. A fractional programming approach to efficient DNA melting temperature calculation.
    Leber M; Kaderali L; Schönhuth A; Schrader R
    Bioinformatics; 2005 May; 21(10):2375-82. PubMed ID: 15769839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GapMis: a tool for pairwise sequence alignment with a single gap.
    Flouri T; Frousios K; Iliopoulos CS; Park K; Pissis SP; Tischler G
    Recent Pat DNA Gene Seq; 2013 Aug; 7(2):84-95. PubMed ID: 22974258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms.
    Bartenhagen C; Dugas M
    Brief Bioinform; 2016 Jan; 17(1):51-62. PubMed ID: 25998133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compressed suffix tree--a basis for genome-scale sequence analysis.
    Välimäki N; Gerlach W; Dixit K; Mäkinen V
    Bioinformatics; 2007 Mar; 23(5):629-30. PubMed ID: 17237063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using progressive methods for global multiple sequence alignment.
    Mount DW
    Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top43. PubMed ID: 20147224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alignment of three biological sequences with an efficient traceback procedure.
    Gotoh O
    J Theor Biol; 1986 Aug; 121(3):327-37. PubMed ID: 3795999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Search of latent periodicity in amino acid sequences by means of genetic algorithm and dynamic programming.
    Pugacheva V; Korotkov A; Korotkov E
    Stat Appl Genet Mol Biol; 2016 Oct; 15(5):381-400. PubMed ID: 27337743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data.
    Shaik JS; Khan A; Beverley SM; Sibley LD
    BMC Genomics; 2015 Feb; 16(1):133. PubMed ID: 25766039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perfect Hamming code with a hash table for faster genome mapping.
    Takenaka Y; Seno S; Matsuda H
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S8. PubMed ID: 22369457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CATO: The Clone Alignment Tool.
    Henstock PV; LaPan P
    PLoS One; 2016; 11(7):e0159586. PubMed ID: 27459605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An algorithm to solve the motif alignment problem for approximate nested tandem repeats in biological sequences.
    Matroud AA; Tuffley CP; Hendy MD
    J Comput Biol; 2011 Sep; 18(9):1211-8. PubMed ID: 21899426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast, optimal alignment of three sequences using linear gap costs.
    Powell DR; Allison L; Dix TI
    J Theor Biol; 2000 Dec; 207(3):325-36. PubMed ID: 11082303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Segmentation algorithm for DNA sequences.
    Zhang CT; Gao F; Zhang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041917. PubMed ID: 16383430
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A software system for gene sequence database construction based on fast approximate string matching.
    Liu Z; Borneman J; Jiang T
    Int J Bioinform Res Appl; 2005; 1(3):273-91. PubMed ID: 18048136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An FPGA Based Energy-Efficient Read Mapper With Parallel Filtering and In-Situ Verification.
    Gudur VY; Maheshwari S; Acharyya A; Shafik R
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2697-2711. PubMed ID: 34415836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time and memory efficient algorithm for extracting palindromic and repetitive subsequences in nucleic acid sequences.
    Tsunoda T; Fukagawa M; Takagi T
    Pac Symp Biocomput; 1999; ():202-13. PubMed ID: 10380198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A fast and memory efficient MLCS algorithm by character merging for DNA sequences alignment.
    Liu S; Wang Y; Tong W; Wei S
    Bioinformatics; 2020 Feb; 36(4):1066-1073. PubMed ID: 31584616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lightweight Pattern Matching Method for DNA Sequencing in Internet of Medical Things.
    Rexie JAM; Raimond K; Murugaaboopathy M; Brindha D; Mulugeta H
    Comput Intell Neurosci; 2022; 2022():6980335. PubMed ID: 36120669
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An efficient string matching algorithm with k differences for nucleotide and amino acid sequences.
    Landau GM; Vishkin U; Nussinov R
    Nucleic Acids Res; 1986 Jan; 14(1):31-46. PubMed ID: 3753770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The WM-q multiple exact string matching algorithm for DNA sequences.
    Karcioglu AA; Bulut H
    Comput Biol Med; 2021 Sep; 136():104656. PubMed ID: 34333228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.