These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 22809675)

  • 1. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.
    Wieding J; Souffrant R; Mittelmeier W; Bader R
    Med Eng Phys; 2013 Apr; 35(4):422-32. PubMed ID: 22809675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.
    Wieding J; Wolf A; Bader R
    J Mech Behav Biomed Mater; 2014 Sep; 37():56-68. PubMed ID: 24942627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.
    Wieding J; Fritsche A; Heinl P; Körner C; Cornelsen M; Seitz H; Mittelmeier W; Bader R
    J Appl Biomater Funct Mater; 2013 Dec; 11(3):e159-66. PubMed ID: 23599179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep.
    Wieding J; Lindner T; Bergschmidt P; Bader R
    Biomaterials; 2015 Apr; 46():35-47. PubMed ID: 25678114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep.
    Pobloth AM; Checa S; Razi H; Petersen A; Weaver JC; Schmidt-Bleek K; Windolf M; Tatai AÁ; Roth CP; Schaser KD; Duda GN; Schwabe P
    Sci Transl Med; 2018 Jan; 10(423):. PubMed ID: 29321260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK.
    Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL
    J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced repair of a critical-sized segmental bone defect in rabbit femur by surface microstructured porous titanium.
    Yang J; Chen HJ; Zhu XD; Vaidya S; Xiang Z; Fan YJ; Zhang XD
    J Mater Sci Mater Med; 2014 Jul; 25(7):1747-56. PubMed ID: 24668271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.
    Jetté B; Brailovski V; Dumas M; Simoneau C; Terriault P
    J Mech Behav Biomed Mater; 2018 Jan; 77():58-72. PubMed ID: 28888934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of a personalized femoral scaffold with designed microarchitecture.
    Pandithevan P; Kumar GS
    Proc Inst Mech Eng H; 2010; 224(7):877-89. PubMed ID: 20839655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications.
    Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K
    J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds.
    Liu X; Wu S; Yeung KW; Chan YL; Hu T; Xu Z; Liu X; Chung JC; Cheung KM; Chu PK
    Biomaterials; 2011 Jan; 32(2):330-8. PubMed ID: 20869110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically engineered porous titanium/brushite scaffolds for critical-size bone defects: A design and manufacturing study.
    Abdulaziz D; Anastasiou AD; Panagiotopoulou V; Raif EM; Giannoudis PV; Jha A
    J Mech Behav Biomed Mater; 2023 Dec; 148():106223. PubMed ID: 37976684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture behaviors of ceramic tissue scaffolds for load bearing applications.
    Entezari A; Roohani-Esfahani SI; Zhang Z; Zreiqat H; Dunstan CR; Li Q
    Sci Rep; 2016 Jul; 6():28816. PubMed ID: 27403936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of two materials for dynamic hip screw during fall and gait loading: titanium alloy and stainless steel.
    Taheri NS; Blicblau AS; Singh M
    J Orthop Sci; 2011 Nov; 16(6):805-13. PubMed ID: 21877191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.
    Van der Stok J; Van der Jagt OP; Amin Yavari S; De Haas MF; Waarsing JH; Jahr H; Van Lieshout EM; Patka P; Verhaar JA; Zadpoor AA; Weinans H
    J Orthop Res; 2013 May; 31(5):792-9. PubMed ID: 23255164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.