BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22809682)

  • 1. Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability.
    Yu SN; Lee MY
    Comput Biol Med; 2012 Aug; 42(8):816-25. PubMed ID: 22809682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional mutual information-based feature selection for congestive heart failure recognition using heart rate variability.
    Yu SN; Lee MY
    Comput Methods Programs Biomed; 2012 Oct; 108(1):299-309. PubMed ID: 22261219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized discriminant analysis for congestive heart failure risk assessment based on long-term heart rate variability.
    Shahbazi F; Asl BM
    Comput Methods Programs Biomed; 2015 Nov; 122(2):191-8. PubMed ID: 26344584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal.
    Mohebbi M; Ghassemian H
    Comput Methods Programs Biomed; 2012 Jan; 105(1):40-9. PubMed ID: 20732724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal.
    Asl BM; Setarehdan SK; Mohebbi M
    Artif Intell Med; 2008 Sep; 44(1):51-64. PubMed ID: 18585905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination power of short-term heart rate variability measures for CHF assessment.
    Pecchia L; Melillo P; Sansone M; Bracale M
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):40-6. PubMed ID: 21075731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paroxysmal atrial fibrillation prediction method with shorter HRV sequences.
    Boon KH; Khalil-Hani M; Malarvili MB; Sia CW
    Comput Methods Programs Biomed; 2016 Oct; 134():187-96. PubMed ID: 27480743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the performance improvement of HRV Indices in CHF using feature selection methods based on backward elimination and statistical significance.
    Narin A; Isler Y; Ozer M
    Comput Biol Med; 2014 Feb; 45():72-9. PubMed ID: 24480166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure.
    Işler Y; Kuntalp M
    Comput Biol Med; 2007 Oct; 37(10):1502-10. PubMed ID: 17359959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.
    Siuly S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):526-38. PubMed ID: 22287252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational identification of human long intergenic non-coding RNAs using a GA-SVM algorithm.
    Wang Y; Li Y; Wang Q; Lv Y; Wang S; Chen X; Yu X; Jiang W; Li X
    Gene; 2014 Jan; 533(1):94-9. PubMed ID: 24120395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of effective features for ECG beat recognition based on nonlinear correlations.
    Chen YH; Yu SN
    Artif Intell Med; 2012 Jan; 54(1):43-52. PubMed ID: 21963421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature-selected tree-based classification.
    Freeman C; Kuli D; Basir O
    IEEE Trans Cybern; 2013 Dec; 43(6):1990-2004. PubMed ID: 23757587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale sample entropy based on discrete wavelet transform for clinical heart rate variability recognition.
    Lee MY; Yu SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4299-302. PubMed ID: 23366878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emotion state identification based on heart rate variability and genetic algorithm.
    Sung-Nien Yu ; Shu-Feng Chen
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():538-41. PubMed ID: 26736318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving discriminality in heart rate variability analysis using simple artifact and trend removal preprocessors.
    Lee MY; Yu SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4574-7. PubMed ID: 21095798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated identification of normal and diabetes heart rate signals using nonlinear measures.
    Rajendra Acharya U; Faust O; Adib Kadri N; Suri JS; Yu W
    Comput Biol Med; 2013 Oct; 43(10):1523-9. PubMed ID: 24034744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of weighting algorithms to improve traditional support vector machine based classifications of reflectance data.
    Qi B; Zhao C; Youn E; Nansen C
    Opt Express; 2011 Dec; 19(27):26816-26. PubMed ID: 22274264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Newborn seizure detection based on heart rate variability.
    Malarvili MB; Mesbah M
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2594-603. PubMed ID: 19628449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Performance of Short-Term Heart Rate Variability in the Detection of Congestive Heart Failure.
    Lucena F; Barros AK; Ohnishi N
    Biomed Res Int; 2016; 2016():1675785. PubMed ID: 27891509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.