These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 22809781)

  • 1. Improvement of biological total phosphorus release and uptake by low electrical current application in lab-scale bio-electrochemical reactors.
    Zhang L; Ma J; Liu Y; Li D; Shi H; Cai L
    Bioelectrochemistry; 2012 Dec; 88():92-6. PubMed ID: 22809781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical effect on denitrification in different microenvironments around anodes and cathodes.
    Zhang LH; Jia JP; Ying DW; Zhu NW; Zhu YC
    Res Microbiol; 2005; 156(1):88-92. PubMed ID: 15636752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous nitrification and denitrification in a single reactor using bio-electrochemical process.
    Watanabe T; Hashimoto S; Kuroda M
    Water Sci Technol; 2002; 46(4-5):163-9. PubMed ID: 12361005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.
    Serralta J; BorrĂ¡s L; Blanco C; Barat R; Seco A
    Water Sci Technol; 2004; 50(10):145-52. PubMed ID: 15656307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.
    Gnirss R; Lesjean B; Adam C; Buisson H
    Water Sci Technol; 2003; 47(12):133-9. PubMed ID: 12926680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hanced biological phosphorus removal in membrane bioreactors.
    Adam C; Gnirss R; Lesjean B; Buisson H; Krauma M
    Water Sci Technol; 2002; 46(4-5):281-6. PubMed ID: 12361022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus release and uptake during start-up of a covered and non-aerated sequencing batch reactor with separate feeding of VFA and sulfate.
    Wu D; Hao T; Lu H; Chui HK; van Loosdrecht MC; Chen GH
    Water Sci Technol; 2012; 65(5):840-4. PubMed ID: 22339018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism.
    Lee J; Kim J; Lee C; Yun Z; Choi E
    Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of enhanced nutrient removal at two full-scale SBR plants.
    Peters M; Newland M; Seviour T; Broom T; Bridle T
    Water Sci Technol; 2004; 50(10):115-20. PubMed ID: 15656303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus removal characteristics of granular and flocculent sludge in SBR.
    Li X; Gao D; Liang H; Liu L; Fu Y
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):231-6. PubMed ID: 21952941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of denitrifying phosphorus accumulating organisms in activated sludge.
    Spagni A; Stante L; Bortone G
    Environ Technol; 2001 Dec; 22(12):1429-37. PubMed ID: 11873878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of biological phosphorus removal in a sequencing moving bed biofilm reactor in seawater.
    Vallet B; Labelle MA; Rieger L; Bigras S; Parent S; Juteau P; Villemur R; Comeau Y
    Water Sci Technol; 2009; 59(6):1101-10. PubMed ID: 19342805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    Water Sci Technol; 2009; 60(10):2695-703. PubMed ID: 19923776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.
    Wu CY; Peng YZ; Wang RD; Zhou YX
    Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of extracellular exopolymers on biological phosphorus removal.
    Liu YN; Xue G; Yu SL; Zhao FB
    J Environ Sci (China); 2006; 18(4):670-4. PubMed ID: 17078544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological nitrogen and phosphorus removal in UCT-type MBR process.
    Lee H; Han J; Yun Z
    Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of copper on enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 62(7):1464-70. PubMed ID: 20935362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The secret to achieving reliable biological phosphorus removal.
    Thomas MP
    Water Sci Technol; 2008; 58(6):1231-6. PubMed ID: 18845861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus fractionation in membrane-assisted biological nutrient removal processes.
    Kim M; Nakhla G
    Chemosphere; 2009 Aug; 76(9):1283-7. PubMed ID: 19577274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.